290 likes | 417 Views
Pushing the Envelope for Beam Sensitive Samples and Trace Element Sensitivity and Accuracy. John Donovan. (541) 343-3400 donovan@probesoftware.com www.probesoftware.com. Every sample is beam sensitive at a sufficiently high beam current. SiO2 Glass. SiO2 Quartz.
E N D
Pushing the Envelope for Beam Sensitive Samples and Trace Element Sensitivity and Accuracy John Donovan (541) 343-3400 donovan@probesoftware.com www.probesoftware.com
Every sample is beam sensitive at a sufficiently high beam current... SiO2 Glass SiO2 Quartz • Usually thermally insulating samples (e.g., non conductors…) • Classical beam sensitive samples (e.g., alkali, hydrous glasses) • Orientation dependent intensity changes over time (e.g., apatites) • Trace element measurements (high beam currents, long counting) • Use alternating on and off-peak measurements (constant delta) • Extrapolate to zero time intensities • Use a “blank” correction to apply a systematic error offset
Fe Ka and Si ka in VG2 Glass Alternating On and Off peak Acquisition To Document Sample Stability 15 keV, 100nA, 20um
Time Dependent Intensity (TDI) Corrections • Intensity Changes over Time • Na, K, Si, Al, etc. • Improved Accuracy of Measured Elements Water By Difference From 100% • Measure all Cations • Calculate Oxygen (assume stoichiometry for Fe, etc.) • Subtract from 100 to Obtain H2O • Matrix Effects: • Effects from Water By Difference • Effects from Na, Si, etc “migration”
Correcting for Intensity Loss (and Gain) Results in Oxide Weight Percents ELEM: Na2O SiO2 Al2O3 MgO TiO2 MnO P2O5 Cl FeO K2O CaO O H2O SUM 169 1.140 72.895 12.112 .065 .080 .052 .007 .174 .502 4.323 .823 -.039 7.867 100.000 170 1.267 72.815 11.824 .069 .143 .032 -.009 .172 .512 4.536 .869 -.039 7.809 100.000 AVER: 1.204 72.855 11.968 .067 .112 .042 -.001 .173 .507 4.429 .846 -.039 7.838 100.000 SDEV: .090 .056 .204 .003 .045 .014 .011 .001 .007 .150 .032 .000 .041 SERR: .064 .040 .144 .002 .032 .010 .008 .001 .005 .106 .023 .000 .029 %RSD: 7.5 .1 1.7 4.2 40.4 33.9 -806.3 .4 1.3 3.4 3.8 -.4 .5 VOL%: 96.461 -2.091 -1.673 ---- ---- ---- ---- ---- 1.218 60.289 ---- ---- ---- DEV%: 18.1 .6 .8 ---- ---- ---- ---- ---- 5.0 6.1 ---- ---- ---- VOLF: LINEAR LINEAR LINEAR ---- ---- ---- ---- ---- LINEAR LINEAR ---- ---- ----
Hyper-exponential Loss Results in Oxide Weight Percents ELEM: Na2O SiO2 Al2O3 MgO TiO2 MnO P2O5 Cl FeO K2O CaO O H2O SUM 169 1.790 72.897 12.121 .065 .080 .052 .007 .173 .501 4.318 .823 -.039 7.213 100.000 170 1.969 72.817 11.833 .069 .143 .032 -.009 .172 .511 4.530 .868 -.039 7.103 100.000 AVER: 1.879 72.857 11.977 .067 .111 .042 -.001 .173 .506 4.424 .845 -.039 7.158 100.000 SDEV: .127 .056 .203 .003 .045 .014 .011 .001 .007 .150 .032 .000 .078 SERR: .090 .040 .144 .002 .032 .010 .008 .001 .005 .106 .023 .000 .055 %RSD: 6.7 .1 1.7 4.2 40.4 33.9 -806.4 .4 1.3 3.4 3.8 -.4 1.1 VOL%: 201.072 -2.091 -1.673 ---- ---- ---- ---- ---- 1.218 60.289 ---- ---- ---- DEV%: 4.0 .6 .8 ---- ---- ---- ---- ---- 5.0 6.1 ---- ---- ---- VOLF: QUADRA LINEAR LINEAR ---- ---- ---- ---- ---- LINEAR LINEAR ---- ---- ----
Can We Test This Extrapolation? Results in Oxide Weight Percents (5 nA) ELEM: Na2O SiO2 Al2O3 MgO TiO2 MnO P2O5 Cl FeO K2O CaO O H2O SUM AVER: 2.289 65.294 14.953 1.176 .416 .055 .093 .059 2.263 5.022 2.094 -.013 .000 93.699 VOL%: 68.999 -.940 -.311 ---- ---- ---- ---- ---- -3.779 18.498 ---- ---- ---- DEV%: 3.2 .8 1.4 ---- ---- ---- ---- ---- 4.9 3.0 ---- ---- ---- Results in Oxide Weight Percents (10 nA) ELEM: Na2O SiO2 Al2O3 MgO TiO2 MnO P2O5 Cl FeO K2O CaO O H2O SUM AVER: 2.443 66.558 15.314 1.129 .533 .031 .109 .065 2.401 4.822 2.058 -.015 .000 95.448 VOL%: 134.049 -1.407 -1.495 ---- ---- ---- ---- ---- -.343 36.614 ---- ---- ---- DEV%: 3.2 .6 .9 ---- ---- ---- ---- ---- 4.5 3.2 ---- ---- ---- Results in Oxide Weight Percents (15 nA) ELEM: Na2O SiO2 Al2O3 MgO TiO2 MnO P2O5 Cl FeO K2O CaO O H2O SUM AVER: 2.313 67.383 15.537 1.263 .468 .018 .103 .068 2.449 4.608 2.137 -.015 .000 96.332 VOL%: 161.641 -1.461 -1.222 ---- ---- ---- ---- ---- -.434 49.134 ---- ---- ---- DEV%: 4.5 .4 .7 ---- ---- ---- ---- ---- 2.8 4.5 ---- ---- ---- Results in Oxide Weight Percents (20 nA) ELEM: Na2O SiO2 Al2O3 MgO TiO2 MnO P2O5 Cl FeO K2O CaO O H2O SUM AVER: 2.369 68.336 15.543 1.095 .444 .041 .069 .058 2.083 4.588 2.037 -.013 .000 96.651 VOL%: 204.518 -1.701 -1.373 ---- ---- ---- ---- ---- -5.860 59.030 ---- ---- ---- DEV%: 5.2 .6 1.0 ---- ---- ---- ---- ---- 4.0 5.9 ---- ---- ----
Matrix Effects from “missing” elements No Volatile Correction, No Water By Difference Results in Oxide Weight Percents ELEM: CaO K2O FeO SiO2 MgO Na2O Al2O3 TiO2 P2O5 O H2O SUM 58 .411 4.900 .537 74.603 .036 2.644 11.975 .073 .000 .000 .000 95.180 59 .437 4.624 .612 75.386 .033 1.841 12.024 .113 .000 .000 .000 95.070 60 .423 4.998 .526 74.715 .023 2.765 12.113 .065 .000 .000 .000 95.628 61 .423 4.853 .637 75.000 .047 2.137 12.089 .055 .000 .000 .000 95.240 62 .435 4.847 .677 74.613 .048 2.561 12.089 .036 .011 .000 .000 95.317 AVER: .426 4.844 .598 74.863 .037 2.390 12.058 .068 .002 .000 .000 95.287 SDEV: .011 .137 .065 .333 .010 .387 .057 .028 .005 .000 .000 %RSD: 2.5 2.8 10.8 .4 27.9 16.2 .5 41.5 223.6 418.3 .0 ZCOR: 1.1202 1.1536 1.1987 1.2061 1.4303 1.8227 1.2568 1.1983 1.4641 .0000 .0000 KRAW: .0161 .3080 .0057 1.0344 .0003 .1323 .7242 .0006 -.0004 .0000 .0000 PKBG: 4.96 59.36 4.84 370.59 1.42 30.93 77.40 1.46 .87 .00 .00 Excel Spreadsheet Subtraction Gives ~ 4.7% H2O
Volatile Correction Matrix Effects With Volatile Correction, No Water By Difference Results in Oxide Weight Percents ELEM: CaO K2O FeO SiO2 MgO Na2O Al2O3 TiO2 P2O5 O H2O SUM 58 .411 4.867 .537 74.378 .037 3.626 12.035 .030 .000 .000 .000 95.921 59 .437 4.740 .612 75.016 .034 2.426 12.063 .194 .000 .000 .000 95.521 60 .423 4.933 .526 74.057 .024 3.805 12.178 .076 .000 .000 .000 96.022 61 .423 5.220 .636 74.552 .048 3.025 12.147 .077 .000 .000 .000 96.128 62 .435 4.715 .677 74.794 .049 3.503 12.146 .048 .011 .000 .000 96.378 AVER: .426 4.895 .598 74.559 .038 3.277 12.114 .085 .002 .000 .000 95.994 SDEV: .011 .203 .065 .370 .010 .557 .062 .064 .005 .000 .000 %RSD: 2.5 4.1 10.8 .5 27.3 17.0 .5 75.6 223.6 .0 .0 ZCOR: 1.1198 1.1530 1.1983 1.2092 1.4391 1.8180 1.2625 1.1979 1.4627 .0000 .0000 KRAW: .0161 .3114 .0057 1.0276 .0003 .1819 .7242 .0008 -.0004 .0000 .0000 PKBG: 4.97 60.00 4.84 369.28 1.43 42.09 77.77 1.58 .87 .00 .00 VOL%: .000 1.135 .000 -.658 .000 36.111 .000 20.283 .000 .000 .000 DEV%: .0 .2 .0 .0 .0 .4 .0 20.3 .0 .0 .0 Na, Si, K Intensity Over Time Iteration Gives ~ 4% H2O
Water By Difference Matrix Effects With Volatile Correction, Water By Difference Results in Oxide Weight Percents ELEM: CaO K2O FeO SiO2 MgO Na2O Al2O3 TiO2 P2O5 O H2O SUM 58 .414 4.885 .542 74.776 .039 3.668 12.139 .030 .000 .000 3.506 100.000 59 .441 4.759 .618 75.464 .036 2.457 12.181 .195 .000 .000 3.849 100.000 60 .426 4.951 .531 74.441 .026 3.848 12.281 .076 .000 .000 3.420 100.000 61 .426 5.239 .641 74.934 .050 3.058 12.249 .077 .000 .000 3.327 100.000 62 .438 4.730 .682 75.149 .051 3.539 12.240 .048 .011 .000 3.112 100.000 AVER: .429 4.913 .603 74.953 .041 3.314 12.218 .085 .002 .000 3.443 100.000 SDEV: .011 .203 .065 .385 .010 .562 .057 .065 .005 .000 .270 %RSD: 2.5 4.1 10.8 .5 25.7 16.9 .5 75.6 223.6 -104.6 7.9 ZCOR: 1.1241 1.1571 1.2053 1.2156 1.4515 1.8372 1.2731 1.2037 1.4591 .0000 .0000 KRAW: .0161 .3114 .0057 1.0276 .0004 .1821 .7244 .0008 -.0004 .0000 .0000 PKBG: 5.03 60.00 4.89 372.20 1.46 43.35 78.99 1.58 .87 .00 .00 VOL%: .000 1.135 .000 -.658 .000 36.111 .000 20.283 .000 .000 .000 DEV%: .0 .2 .0 .0 .0 .4 .0 20.3 .0 .0 .0 Both Na, Si, K Change and Water By Difference Gives 3.4% H2O
Water By Difference vs. FTIR Comparison of melt inclusion water contents measured by FTIR in sub-micron melt inclusion water contents estimated as the difference between 100% and microprobe analysis totals or “water by difference” (WBD). Solid diagonal line indicates 1:1 correspondence, dashed line is a linear regression fixed at the origin. Gray symbols show WBD water content before matrix correction of the analysis and black symbols show matrix-corrected WBD estimates. From Roman, 2003
Accuracy at the 400 PPM Level? Note: Blank level (Clevel) can be non-zero
PET LPET 5 Spectrometers
(normal PET crystal) 5 Spectrometers 1 ppm
Water By Measured Excess Oxygen (Combined TDI and “Blank” Corrections) • Measure All Cations • Measure Oxygen (easier said than done) • Calculate Stoichiometric Oxygen From Cations • Subtract Stoichiometric Oxygen From Measured Oxygen • Calculate Water By Stoichiometry To Hydrogen (OH, H2O) (Nash, 1992) Where do we stand today if we do not use an oxygen standard similar to our unknowns? Wither’s Synthetic Rhyolite Glasses
Accuracy Issues for Oxygen Analysis • Sample/Standard Roughness and Sample/Standard Carbon Coat Thickness • - Use 0.05 um final polish • - Coat standards and unknowns simultaneously • Sample Conditions • - Lower voltages (for oxygen), defocus beam (reduce damage) • PHA adjustments • - Na Ka II on O ka (use differential mode) • Missing elements and cation valences • - Li, Be, B, C (and Ba, Sr, etc) • - Fe2+, Fe3+ • Matrix Corrections • - Take your pick! • Mass Absorption Coefficients and Area Peak Factors (APFs) • - Use modern MAC database (FFAST), empirical MACs
Wither’s Glass Analyses (using MgO std) • Armstrong phi-rho-z, FFAST MACS, no APFs, no volatile corr. 3.9 wt% Na2O 4.5 wt % Na2O
Hyper-exponential Loss Two exponential processes with different decay constants overlapping in time(?)
Add Volatile Corrections • Intensity changes for Na, K, Si and O (ignoring Al!) Si Ka, -0.73% relative O Ka, -2.9% relative O Ka, -3.7% relative Linear Extrapolation Quadratic Extrapolation
Add APFs and Empirical MACs FFAST vs. Empirical MACs MgO Al2O3 SiO2 Area Peak Factors (APFs)
“Blank” Correction… Continuum artifacts
Accuracy Calibration NBS K-411 Mineral Glass, (same conditions as unknown) C.M. Taylor: FeO 4.39, Fe2O3 11.23 Total as FeO 14.49, Excess O 1.12 ELEM: Na2O K2O Cl BaO F TiO2 FeO MnO CaO SiO2 Al2O3 MgO O SUM 598 .034 .016 -.018 .024 .003 .000 14.583 .154 15.353 53.843 .034 14.345 1.687 100.057 599 -.013 .002 .013 .018 .017 -.016 14.396 .130 15.178 54.277 .039 14.302 2.224 100.566 600 .030 -.002 -.039 .016 -.022 -.102 14.545 .131 15.036 53.729 .031 14.376 1.662 99.390 601 .009 .017 .013 -.050 -.015 .027 14.712 .131 15.081 53.783 .048 14.389 1.731 99.875 602 -.006 .016 -.042 -.002 -.030 -.054 14.381 .085 15.115 54.022 .035 14.455 1.804 99.780 603 .092 .033 .031 -.033 .017 .059 14.553 .094 15.195 54.171 .039 14.430 1.413 100.094 604 -.003 .006 -.003 -.012 .017 .016 14.449 .093 15.546 54.148 .033 14.339 1.989 100.618 605 .075 -.003 -.010 .006 .022 .000 14.431 .160 15.224 53.721 .025 14.411 1.611 99.672 606 -.020 -.001 .023 .027 .011 .027 14.461 .162 15.238 53.308 .028 14.350 1.796 99.409 607 -.005 .016 .018 .000 -.011 -.011 14.418 .124 15.514 53.968 .036 14.390 1.657 100.114 608 -.003 .002 .008 -.073 .016 -.005 14.468 .134 15.263 53.684 .036 14.515 2.174 100.217 609 .023 -.008 -.005 .016 -.008 -.075 14.445 .111 15.083 54.327 .047 14.337 2.024 100.318 AVER: .018 .008 -.001 -.005 .001 -.011 14.487 .126 15.236 53.915 .036 14.387 1.814 100.009 SDEV: .035 .012 .023 .031 .018 .046 .095 .026 .164 .294 .007 .059 .242 SERR: .010 .003 .007 .009 .005 .013 .027 .007 .047 .085 .002 .017 .070 %RSD: 197.6 152.8 -2691.0 -583.6 1204.5 -408.2 .7 20.6 1.1 .5 19.0 .4 13.3
44.8064 43.558 Wither’s Glasses without “Blank” Correction Wither’s Glasses with “Blank” Correction
Accuracy of Oxygen Using Glass Standards Blank: NBS, K-411, no corrections NBS, K-411, with all corrections (excess oxygen should be 1.12 wt%) NBS, K-412, with all corrections (excess oxygen should be 0.82 wt%)
Suggestions for Improved Beam Sensitive Sample Accuracy • Standards (correct for TDI effects here too!) • Matrix effects of H2O by difference (iterated re-calculation) • Acquisition parameters (keV, beam focus, current: linear regime) • MAN backgrounds for speed (minimize damage) • Intensity changes over time (“volatile” or TDI corrections) When Analyzing Water by Measuring Excess Oxygen: • Oxygen analysis accuracy issues (sample prep, TDI corrections, MACs, APFs, “blank” accuracy correction)
Julien Allaz, University of Massachusetts, Tomorrow at 5:30 PM "Optimizing Background Measurement Accuracy Using Multi-Point Background Positions"