140 likes | 347 Views
Find the value of f(1,3) for the function f(x,y)=2x²y+3y-5. 0 10 16 58. Evaluate f(x,y,z,t)=x³-4y²t+2zx when x=t=2, y=1, z=4. 4 8 16 20. Find for f(x,y)=2x³-y²+5xy-3. 2y²+5x 6x²-y²+5y 6x²+5y 6x²+5xy-3. Find for f(x,y)=3cos2x – 2sin3y. -6cosy -6cos3y -2cos3y
E N D
Find the value of f(1,3) for the function f(x,y)=2x²y+3y-5 0 10 16 58
Evaluate f(x,y,z,t)=x³-4y²t+2zx when x=t=2, y=1, z=4 4 8 16 20
Find for f(x,y)=2x³-y²+5xy-3 2y²+5x 6x²-y²+5y 6x²+5y 6x²+5xy-3
Find for f(x,y)=3cos2x – 2sin3y -6cosy -6cos3y -2cos3y -2cosy
Find for f(x,y)=x³y²-4x+6y-9 2x³y - 4x + 6 2x³y + 6 2x³ + 6 2x³
Find for f(x,y)=y²-3x²-8y³x+1 -24y² -6-24y² -6x-24y 2-48y
Is (0,1) a stationary point for the function f(x,y)=5x²-8y²+3y-2? Yes No Don’t know
Find the x coordinates of the stationary points of f(x,y)=x³-y²-3x+6y-8? 1 and 3 1 and -1 -1 and 3 -3 and -3 None of the above
Given D=fxx fyy-(fxy)², then which of the following below implies a stationary point is a local minimum? 1 2 3 4 1. 2. 3. 4.
Locate and determine the nature of the stationary points of f(x,y)=4x2-2y2+4y3-10 (0,0) saddle point, (0,-1/3) saddle point (0,0) saddle point, (0,1/3) local minimum (0,0) saddle point, (0,-1/3) local minimum None of the above
Given δf is the change in f at (x0,y0) resulting from small changes h, k to x0, y0 respectively and δf = f(x0+h, y0+k) - f(x0,y0).Then which of the following represents the relative error in f ? 1 2 3 4 5 1. 2. 3. 4. None of the above 5. Don’t know
Estimate the absolute error for the function f(x,y)=2x²y-5y² δf ≈ 4xyδx + (2x²-10y)δy δf ≈ 4xyδy + (2x²-10y)δx δf ≈ 2x²δx + (2y-5y²)δy δf ≈ 2x²δy + (2y-5y²)δx Don’t know
Estimate the absolute error in f(x,y)=3x²-y²+xy-2 at the point x=2, y=4 if δx=±0.03 and δy=±0.02 ± 0.78 ± 0.52 ± 0.36 ± 0.2
If and x, y, u are subject to percentage relative errors of 2%, -3% and 1% respectively find the approximate percentage relative error in f. -12% -6% -1% 2% 3% Don’t know