340 likes | 531 Views
Negli organismi eterotrofi è presente la sola reazione di respirazione (che semplificata al massimo può essere espressa come glucosio + ossigeno -> biossido di carbonio + acqua +energia
E N D
Negli organismi eterotrofi è presente la sola reazione di respirazione (che semplificata al massimo può essere espressa come glucosio + ossigeno -> biossido di carbonio + acqua +energia negli organismi autotrofi è presente (e prevalente) la reazione di fotosintesi (che, anch'essa semplificata al massimo, può essere espressa come acqua + biossido di carbonio + energia (solare) -> glucosio + ossigeno
Catabolism (Greek kata = downward + ballein = to throw) is the set of pathways that break down molecules into smaller units and release energy Anabolism (Greek ana = upward + ballein = "to throw") is the set of metabolic pathways that construct molecules from smaller units
Krebs cycleis a series of chemical reactions used by all aerobic organisms to generate energy through the oxidation of acetatederived from carbohydrates, fats and proteins into carbon dioxide and chemical energy in the form of adenosine triphosphate (ATP).
Per mezzo delle informazioni fornite da REACTOME è possibile seguire molti percorsi di reazioni tra proteine, acidi nucleici, piccole molecole ed i loro complessi molecolari delle specie considerate come rappresentative dei diversi organismi viventi
ATP story automobile carburante benzina, gasolio, metano, GPL, elettroni, idrogeno…. Adenosine-Tri-Phosphate adenosina-tri-fosfato
ATP story energia 60% riscaldamento + + ATP ADP Pi energia 70-75% riscaldameto + + + O2 H2O Carburante + ossigeno anidride carbonica + acqua
ATP story energia 60% riscaldamento + + ATP ADP Pi energia cibo o sole & sali + +
ATP sintetasi ATP story L’energia giornaliera di cui abbiamo bisogno deriva dalla reazione ATP —› ADP + P Per una vita normale (senza attività sportive!) abbiamo bisogno di 50 - 75 Kg di ATP Nel corpo umano, mediamente, si trovano 50 g di ATP; ciascuna molecola di ATP partecipa alla reazione 1.000 – 1.500 volte al giorno. Adenosine-Tri-Phosphate adenosina-tri-fosfato
Il mitocondrio: una parte della cellula davvero particolare ATP sintetasi Spazio intramembrana matrice Il numero di mitocondri in ogni cellulla varia da 1 a 10.000 a seconda del tipo. Nei globuli rossi maturi non ci sono mitocondri. creste ribosoma granuli membrana interna membrana esterna
ATP sintetasi Nelle cellule eucariote, nei cloroplasti e nei mitocondri la sintesi dell’ATP è fatta da una complessa macchina molecolare chiamata ATP sintetasi. Durante la sintesi dell’ATP, il rotore centrale ruota alla velocità di 150 volte al secondo.
ATP sintetasi ATP sintetasi un motore molecolare che gira a 9.000 rpm Nelle cellule eucariote, nei cloroplasti e nei mitocondri la sintesi dell’ATP è fatta da una complessa macchina molecolare chiamata ATP sintetasi. Durante la sintesi dell’ATP, il rotore centrale ruota alla velocità di 150 volte al secondo.
ATP sintetasi un motore molecolare che gira a 9.000 rpm Fluorimeter video of fluorescent F-actin attached to the c-ring of FO which rotates as driven by ATP-hydrolysis in F1
RISPOSTA IMMUNITARIA RISPOSTA UMORALE RISPOSTA CELLULO-MEDIATA
RISPOSTA IMMUNITARIA RISPOSTA UMORALE RISPOSTA CELLULO-MEDIATA
RISPOSTA CELLULO-MEDIATA linfociti killer linfociti helper
Trasduzione del segnale Cells in our body are surrounded by a lipid membrane. The "water-loving" heads of the phospholipid molecules (blue) are directed towards the outer and inner surfaces of the membrane. Many proteins stretch through the entire membrane. A first messenger (1), a molecule of adrenaline, binds to a specific adrenaline receptor (2), a discriminator. Thereby, the transducer (3), a G protein - composed of alpha-, beta- and gamma subunits - is activated. This, in turn, stimulates the amplifier (4), adenylate cyclase, which produces (5) the second messenger, cyclic AMP, from (6) ATP (adenosine- triphosphate). (7) A cascade of enzymatic reactions alters the behaviour of the cell and (8) via phosphorylation (9) glycogen is transformed to (10) glucose, which the cell uses to generate ATP. Phosphorylation can also alter membrane proteins, for example, ion channels (11). http://www.nobel.se/medicine/educational/poster/1994/signal.html
Ingegneria proteica • Difficoltà di progettazioni “de-novo” di proteine a funzione pre-definita (solo 260 documenti nella PDB). • Possibilità di ristrutturazioni atomiche di proteine naturali.
Ingegneria proteica • Difficoltà di progettazioni “de-novo” di proteine a funzione pre-definita (solo 260 documenti nella PDB). • Possibilità di ristrutturazioni atomiche di proteine naturali.
Ingegneria proteica 1MJ0 Title: Sank E3_5: An Artificial Ankyrin Repeat Protein Compound: Mol_Id: 1; Molecule: Sank E3_5 Protein; Chain: A; Engineered: Yes Authors: A. Kohl, H. K. Binz, P. Forrer, M. T. Stumpp, A. Plueckthun, M. G. Gruetter Exp. Method: X-ray Diffraction Classification: De Novo Protein Source: Designed synthetic gene Primary Citation: Kohl, A., Binz, H. K., Forrer, P., Stumpp, M. T., Plueckthun, A., Gruetter, M. G.: Designed to be Stable: Crystal Structure of a Consensus Ankyrin Repeat Protein Proc.Nat.Acad.Sci.USA 100 pp. 1700 (2003). Residues: 166 1L4X Title: Octameric De Novo Designed Peptide Compound: Mol_Id: 1; Molecule: Sin-Asp-Glu-Leu-Glu-Arg-Ala-Ile-Arg-Glu-Leu-Ala- Ala-Arg-Ile-Lys-Nh2; Chain: A, B, C, D, E, F, G, H; Engineered: Yes Authors: M. Meier, A. Lustig, U. Aebi, P. Burkhard Exp. Method: X-ray Diffraction Classification: De Novo Protein Source: synthetic construct Primary Citation: Meier, M., Lustig, A., Aebi, U., Burkhard, P.: Removing an Interhelical Salt Bridge Abolishes Coiled-Coil Formation in a De Novo Designed Peptide J.Struct.Biol. 137 pp. 65 (2002) Residues: 128 1HQJ Title: Crystal Structure Of A De Novo Designed Trimeric Coiled- Coil Peptide Compound: Mol_Id: 1; Molecule: Sin-Asp-Glu-Leu-Glu-Ala-Arg-Ile-Arg-Glu-Leu-Glu- Ala-Arg-Ile-Lys-Nh2; Chain: A, B, C, D, E, F, G, H, I, J, K, L; Engineered: Yes Authors: P. Burkhard, M. Meier, A. Lustig Exp. Method: X-ray Diffraction Classification: De Novo Protein Source: synthetic construct Primary Citation: Burkhard, P., Meier, M., Lustig, A.: Design of a Minimal Protein Oligomerization Domain by a Structural Approach Protein Sci. 9 pp. 2294 (2001) Residues: 192
Protein engineering is often approached as if it were part of biology. Imagine approaching aerospace engineering as if it were part of ornithology: Although the pioneers of human flight learned a lot about wings from birds, if they had waited for success in making artificial feathers and artificial muscle, we’d still be on the ground. The design of an artificial oxygen transport protein (6). Design begins with an extremely simple heptad near-repeat sequence using just three amino acids (1). Blue highlight marks heptad divisions. Design progresses through stages of amino acid changes (red) and trial intermediates (225) that are tested to reveal functional properties and to clarify the roles of individual amino acids. In 225, helical sequences shown are linked by cysteine disulphide loops and self assemble in four-helix bundles, whereas in 6 a longer loop (red) unites two identical sequences, with the loops themselves now disulphide-linked, as shown to the right. NATURE Vol 458 19 March 2009, pag. 305
Ingegneria proteica • Difficoltà di progettazioni “de-novo” di proteine a funzione pre-definita (solo 260 documenti nella PDB). • Possibilità di ristrutturazioni atomiche di proteine naturali.
Le barre rosse indicano Tm della proteina mutata – Tm proteina nativa Le barre verdi indicano Tm della proteina mutata – Tm proteina con una sola coppia SS ( o SH SH)
• Thermophiles like unusually hot temperatures. A few species have been found to survive even above 110 degrees Celsius. • Psychrophiles like extremely cold temperatures (even down to -10 degrees Celsius). • Halophiles thrive in unusually salty habitats. Some can thrive in water that’s 9% salt; sea water contains only 0.9% salt. • Acidophiles prefer acidic conditions; Alkaliphiles prefer very alkaline environs.
Part of the listofall 71 genomesused in thisstudytogetherwith the differentparameters, orderedbydecreasingCvP-bias. Mesophiles (OGT<55%) are highlighted in blue, thermophiles (OGT<80°) in yellow, and hyperthermophiles in red. • Kingdom: A=archea; B=batteri • OGT: optimal growth temperature • G+C%= guanina + citosina % G C Karsten SUHRE and Jean-Michel CLAVERIE: GenomicCorrelatesofHyperthermostability: an Update (JBC 2003)
a, plot of the percentages of charged amino acids (Asp, Glu, Lys, Arg, blue), polar non-charged amino acids (Asn, Gln, Ser, Thr, green), and of the difference of the two (CvP-bias,red).Blue, orange, and red vertical lines identify the mesophiles, thermophiles, and hyperthermophiles, respectively. b, plot of the percentages of the various amino acids in mesophiles (blue), thermophiles (orange), and hyperthermophiles (red). c, plot of the various amino acid classes; colors as in panel b. Plot of the percentages of the various amino acids in mesophiles (blue), thermophiles (orange), and hyperthermophiles (red).