490 likes | 1.23k Views
Exponents - An introduction -. By Carol Edelstein David E. Owens Middle School New Milford, NJ. Location of an Exponent. An exponent is a number high and to the right of a base number. Exponent. 3. 4. Base. Definition of Exponent.
E N D
Exponents- An introduction - By Carol Edelstein David E. Owens Middle School New Milford, NJ
Location of an Exponent • An exponent is a number high and to the right of a base number. Exponent 3 4 Base
Definition of Exponent • An exponent tells you how many times the base number is multiplied by itself. Exponent 4 3 Base • So, 34 is equal to 3 x 3 x 3 x 3.
How to read an Exponent • This exponent is read “three to the fourth power”. 3 4 • This exponent is read “two to the sixth power”. 6 2
How to read an Exponent (the special cases) • This exponent is read “seven to the second power”or “seven squared”. 7 2 • This exponent is read “eight to the third power”or “eight cubed”. 3 8
Practice – Read These Exponents 2 2 3 6 5 7 3 4
Did you get… Three to the second power or Three squared Six to the fifth power 2 2 3 6 5 7 3 4 Two to the third power Seven to the fourth power or Two cubed
What is the Exponent? 3 2 x 2 x 2 = 2
What is the Exponent? 2 3 x 3 = 3
What is the Exponent? 4 5 x 5 x 5 x 5 = 5
What is the Base and the Exponent? 4 8 x 8 x 8 x 8 = 8
What is the Base and the Exponent? 5 7 x 7 x 7 x 7 x 7 = 7
What is the Base and the Exponent? 9 x 9 = 9 2
How to multiply out an Exponent to find theStandard Form 4 3 = 3 x 3 x 3 x 3 9 27 81
Write the Power in Standard Form 2 4 16 = 4 x 4 = 16 Make sure that you do notread this question as 4 x 2.
Write the Power in Standard Form 3 2 8 = 2 x 2 x 2 = 4 x 2 = 8 How did you do?
Write the Power in Standard Form 2 3 9 = 3 x 3 = 9 Again, make sure that you do notread this question as 3 x 2.
Write the Power in Standard Form 4 5 625 = 5 x 5 x 5 x5 = 25 x 5 x 5 = 125 x 5 = 625
Exponents used inArea Problems Area = length x width Length = 30 ft Width = 15 ft Area = 30 ft x 15ft = 450 ft 15ft 30ft 2 Remember:ft 2 = ft x ft
Exponents are used inVolume Problems Volume=length x width x height length = 10 cm width = 10 cm height = 20 cm Volume = 20 cm x 10 cm x 10 cm = 2,000 cm 20cm 10cm 10cm 3 Remember:cm3 = cm x cm x cm
Exponents are also used… • in scientific notation to express very large or small numbers. Example: The distance to the sun is about 90,000,000 miles. Using scientific notation, we can write this number. 90,000,000 = 9 x 10 x 10 x 10 x 10 x 10 x 10 x 10 9 x 10 7 Scientific notation
Congratulations, now you know a little more about exponents. The End