570 likes | 837 Views
Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology. Afshin Ziaei, Sébastien Demoustier, Eric Minoux. Outline. Application hyperfréquence à THALES: Antenne à réseau réflecteur Micro-technologies: RF MEMS à THALES Research & Technology
E N D
Micro- & Nano-technologies pour applications hyperfréquenceà Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux Research & Technology
Outline • Application hyperfréquence à THALES: Antenne à réseau réflecteur • Micro-technologies: RF MEMS à THALES Research & Technology • Micro-commutateur capacitif • ZrO2-MEMS switch • ZrO2-MEMS SPDT • Power Handling and Life-time of PZTRF MEMS • Nano-technologies for RF applications • Nano-commutateurs • Nano-antennes
Metallic Grid { Epoxy radome j j j Drivers Drivers Drivers ... { Multilayers electronic board THALES Reflect Array Antenna MIRABEL (1998)
Elementary phase shifter RF-DC decoupling capacitances PIN-diodes Wave-guide flange
MEMS for Power Switching SEM picture Si micro-machined, metal membrane Electrostatic actuation Capacitive switch using high K dielectric material for high Con/Coff ratio (~150) Series or shunt switch designs
MEMS for Power Switching • MEMS technology used : ‘ Surface micro-machining ’ TiW / Al 0.7 m Au 3.6 m Si3N4 0.2 m TiW/Au 0.6 m SiO2 2 m Si HR or glass substrate Au CPW line W = 80 m S = 120 m Schematic of cross section (Shunt Switch) Control electrode (TiW) Holes are etched into the membrane in order to facilitate the membrane ‘ delivery ’
120 µm 120 µm 80 µm 100 µm Control pad GND SGN GND MEMS for Power Switching
SEM pictures of fabricated switches Ground membrane command electrode gap signal RF out signal RF in membrane Ground Gap : g = 3 m Membrane width : 100 m Dielectric thickness : g0 = 0.2 m
Insertion losses (Membrane in up position) (20 GHz):S12 : -0.15 dB (40 GHz):S12 : -0.2 dB
Isolation (Membrane in down position) 25 dB à 40 GHz
Return losses S11Membrane in up position (The membrane is unactuated ) S11Membrane in down position (The membrane is actuated) (20 GHz):S11 : 13 dB (40 GHz):S11 : 10 dB (20 GHz):S11 : 3 dB (40 GHz):S11 : 1 dB 0-40 GHz measurements
Thales results • Results under 0dBm Key characteristics of TRT MEMS RF Switch
Series MEMS switches Conception Line of command plan de masse ON state : Membrane in down position OFF state : Membrane in up position 120 80 120 120 plan de masse V1 V1 V2 High resistivity resistors
Increasing switching ratio ( ) How do we improve switch performance? Increasing Cdown for a given Cup
Influence of K on switch isolation Simulations HFSS Isolation (dB) f(GHz) Much higher isolation in DOWN state than previous design Replace Si3N4 with high dielectric constant ZrO2film
Switch measured characteristics: Insertion loss Shunt ZrO2switch characteristics in the UP state Insertion loss (dB) Frequency (GHz)
Switch measured characteristics: Return loss Shunt ZrO2switch characteristics in the UP state Return loss (dB) Frequency (GHz)
Switch measured characteristics: Isolation Shunt ZrO2switch characteristics in the DOWN state Isolation (dB) Frequency (GHz)
Switch measured characteristics: Return loss Shunt ZrO2switch characteristics in the DOWN state Return loss (dB) Frequency (GHz)
MEMS SPDT Switch (ZrO2) Signal IN Signal OUT1 Signal OUT2 Coplanar Waveguide
Signal OUT 3 Signal OUT 2 MEMS SPDT Switch (ZrO2) Signal IN 1 On Off THALES design, Serial-serial PZT-PZT
1 3 2 Frequency (GHz) Frequency (GHz) MEMS SPDT Switch (ZrO2) without packaging (X band) Membrane down position (S13 in the on state) S13 S33 S33in the on state (Membrane down position)
1 3 2 S12 Frequency (GHz) S22 Frequency (GHz) MEMS SPDT Switch (ZrO2) without packaging (X band) Membrane up position (in the off state) S22 in the off state (Membrane up position)
1 3 2 S11 Frequency (GHz) S23 Frequency (GHz) MEMS SPDT Switch (ZrO2) without packaging (X band) Membrane up position (in the off state)
RF Probe DUT RF Probe Power handling measurements (10 GHz) Power Handling of RF MEMS Capacitive shunt switches DC Power supply 10-12 GHz Synthesizer TWT-Amplifier Attenuator(1) Directional Coupler DC Bias Tee Spectrum Analyser Attenuator(2) Network Analyser Attenuator(4) Attenuator(3)
Power Handling of RF MEMS Capacitive shunt switch PZTShunt capacitive switch under 0dBm (10 GHz)
Power Handling of RF MEMS Capacitive shunt switch Measured down-state isolation versus input power at 10GHz
Power Handling of RF MEMS Capacitive shunt switch Measured up-state Insertion Loss versus input power at 10GHz
RF Probe PC-Labview DUT RF Probe Power Meter Lifetime measurements (10 GHz) High power RF lifetime of THALES MEMS switch at 10GHz TWT-Amplifier DC Power supply 10-12 GHz Synthesizer Attenuator(1) Directional Coupler DC Bias Tee Network Analyser Attenuator(2) Spectrum Analyser Attenuator(4) Attenuator(3)
RF lifetime of THALES MEMS switch at 10GHz Cold switching (37 dBm) Measured up-state Insertion Loss versus input power at 10GHz
RF lifetime of THALES MEMS switch at 10GHz Cold switching (37 dBm) Measured down-state isolation versus input power at 10GHz
RF lifetime of THALES MEMS switch at 10GHz RF Lifetime at 10 GHz 10 Billion Cycles at 37 dBm 32 Devices Tested at 36 dBm and Room Temp. 25 Devices Completed 10 Billion Cycles (Stopped Test) 6 Devices Completed 1 Billion Cycles (Stopped Test) 1 Device Failed at 0.72 Billion Cycles 8 KHz Cycle Rate 0.69 Billion Cycles/Day 10 Billion Cycles in 15 Days
CNs switch J. E. Jang et al., Appl. Phys. Lett. 87, 163114 (2005) “Nanoelectromechanical switches with vertically aligned carbon nanotubes” Department of engineering, University of Cambridge
NEMS @ TRT • Why carbon nanotube based NEMS? • High isolation, low losses from MEMS properties • Low actuation voltage < 10 V • High switching speed ~ a few ns • High power handling exceptional electrical and mechnical properties of CNs • High integration density • Low cost • Low consumption From nanometer size of CNs • Main difficulty • Achieving reproducible and routinely fabrication process of CN switches
NEMS @ TRT TRT has developed a growth technology of highly homogeneous vertical CNs
NEMS @ TRT Ohmic switch (metal/metal contact) Capacitive switch (metal/dielectric/metal contact)
NEMS @ TRT Coupling CNs with coplanar waveguides for RF switching
Radiated Field -/4 I0 Current Distribution 0 Generator /4 Dipole Dipole Length CN Antennas • Advantages of CN antennas: • High integration • High density circuits • High frequency resonnators • Applications of CN antennas: • Wireless communications between nano-sized devices/organisms and macroscopic world • Antenna arrays at high frequencies • Thales: 60-110 GHz • Particular electrical properties: • High characteristic impedance & high losses • High relaxation frequency (>50GHz) • High wave velocity (/50 - /100)
CN Antennas • Technical issues: • Dipole fabrication: FIB • Impedance matching: 50 - 10k • Emission pattern measurements: • Radiation efficiency – 60 dB
Conclusion • Conclusion • Key RF performance characteristics for a Zro2-SPDT switch are at 10 Ghz: • insertion loss of 0.15 dB and isolation of 28 dB . • RF lifetimes exceeding 1010 cycles achieved at input Power level of 36 dBm • Research on nanotubes RF NEMS is underway at Thales Research & Technology
Bare chip Characteristics: Insertion lossesMembrane in up position
0.04-20 GHz measurements Return losses
Bare chip Characteristics: Isolation (0.4-40 GHz)Membrane in down position