1.19k likes | 1.87k Views
UNIVERSITE' PIERRE ET MARIE CURIE LABORATOIRE DE ROBOTIQUE DE PARIS. UNIVERSITA' DEGLI STUDI DI GENOVA FACOLTA' DI INGEGNERIA. PHD THESIS EN COTUTELLE XVII CICLE. Development of micro-tools for surgical applications. 18 November 2005. SUPERVISORS: PROF. ING. Rinaldo MICHELINI
E N D
UNIVERSITE' PIERRE ET MARIE CURIE LABORATOIRE DE ROBOTIQUE DE PARIS UNIVERSITA' DEGLI STUDI DI GENOVA FACOLTA' DI INGEGNERIA PHD THESIS EN COTUTELLE XVII CICLE Development of micro-tools for surgical applications 18 November 2005 SUPERVISORS: PROF. ING. Rinaldo MICHELINI PROF. ING. Philippe BIDAUD STUDENT: Francesco CEPOLINA
Index robotic surgery MEMS technologies modules design system integration
Robotic surgery Robotic in-body equipment Active catheters Endoscopes Autonomous worms Navigating pills Remote-surgery environments Orthopaedic surgery Eye surgery Laparo/thorax-tomic surgery Surgical end-effectors
Active catheters Tohoku University www.olympus.com Esashi catheter Olympus catheters
Endoscopes 1 of 4 Hirose + Yoneda Robotics lab State of art Ikuta laboratory Endoscope tip Hirose and Ikuta endoscopes
Endoscopes 2 of 4 ARTS lab Pisa arthroscope Paris 6 LRP intestinal endoscope
Endoscopes 3 of 4 Dr. Gründler Swiss endoscope Pennsylvania State University Stanford Research Institute EPAM endoscopes
Endoscopes 4 of 4 Imperial College of London Neuro-endoscopic operating instruments Grenoble University Laparotomic endoscope
Autonomous worms 1 of 3 ARTS lab Katholieke Uneversiteit Leuven Leuven intestinal worm Pisa intestinal worm
Autonomous worms 2 of 3 Katholieke Uneversiteit Leuven Leuven intestinal worm arms Korea worm Korea Institute of Science and Technology
Autonomous worms 3 of 3 Korea Institute of Science and Technology Korea impulsive worm Korea centipede worm
Navigating pills www.rfnorika.com The Norika 3 pill
Robotic surgery Robotic in-body equipment Active catheters Endoscopes Autonomous worms Navigating pills Remote-surgery environments Orthopaedic surgery Eye surgery Laparo/thorax-tomic surgery Surgical end-effectors
Orthopaedic surgery Israel Institute of Technology NASA Jet Propulsion Lab Eye surgery
Laparo/thorax-tomic surgery http://www.intuitivesurgical.com/ The da Vinci® surgery system
Surgical end-effectors 1 of 4 The ZEUS® surgery tools http://www.intuitivesurgical.com/ da Vinci® surgery tools
Surgical end-effectors 2 of 4 da Vinci® snake wrist http://www.intuitivesurgical.com Technical University of Lódz Poland surgery gripper
Surgical end-effectors 3 of 4 Michigan State University College of Engineering Michigan surgery gripper German Aerospace Center, DLR German surgery gripper
Surgical end-effectors 4 of 4 Warsaw University of Technology Poland sewing effector Daimler Benz German forceps
2DoF 4DoF 4DoF 5DoF 5DoF 5DoF Minimally invasive surgery: clamps F. Cepolina, R.C. Michelini, “"Robots in medicine: A survey of in-body nursing aids. Introductory overview and concept design hints."
Index robotic surgery MEMS technologies modules design system integration
MEMS technologies 1/4 PIEZOELECTRIC EFFECT Multilayer piezoelectric actuators Ultrasonic motor Inchworm piezoeletric motor ELECTROSTATIC FORCE Comb drive Rotating comb drive Wooble motor
MEMS technologies 2/4 MAGNETO AND ELECTRO-STRICTIVE FORCE Electrostrictive actuators Elastomeric dielectric actuators Magnetostrictive actuators MAGNETO- AND ELECTRO- RHEOLOGICAL EFFECT SHAPE MEMORY ALLOYS Actuators SMA ELECTROMAGNETIC FIELD 1/2 Coreless DC motors
MEMS technologies 3/4 ELECTROMAGNETIC FIELD 2/2 Brushless DC motor Micro linear motor Stepper motor Micro stepper motor Solenoids Voice coil motor
MEMS technologies 4/4 FLUID ACTUATION Bourdon pipe Artificial muscles THERMAL EXPANSION
Index state of art MEMS technologies modules design system integration
Modules design embodiment design commercial components detail design control Target 1 Improvement of arm dexterity
Technical problems Limited module size: 10 mm max (fixed by the trocar) L 30 mm max (fixed by thorax) Size Limited actuators power block not active joints, use light material limited n° of modules, limited payload Machining Limited space available use miniature screws, gluing, welding How to link modules together: mechanic, power, signal Operating theatre High precision and accuracy is required arm stiffness, error compensation Safety force feedback, fast module retrieval, module reliability, modules compliance Control Redundant robot control distributed logic, singularities avoidance, coordination with 2nd hand, sensor fusion, communication protocol Actuation ? Material ? Transmission ? Sensors ?
Surgical articulated arm Vladimir Filaretov Instrument design In collaboration with: Prof. Vladimir Filaretov of Far Eastern State Technical University (Vladivostok)
Arm with clutches TECHNICAL PROBLEM • Clutches are delicate • Precision machining is needed
Self powered forearm TECHNICAL PROBLEM • Motors limit the arms power • Low dexterity
Universal joint forearm TECHNICAL PROBLEM • Precision machining is needed
Flexible joints forearm TECHNICAL PROBLEM • Disposition of the wires along the arm
Modules design embodiment design commercial components detail design control
Torque needed for sewing Sewing torque 1,2 mNm Actuation Material Transmission Sensors
Piercing 0.5 N Wire stretch 1 N Clamp 40 N Motor selection 1/2 Commercial miniature electric motors COMMENTS Penn States sells miniature (1.8 mm diam, 4 mm long) piezoelectric motors too expensive (3300 Euro/each) Actuation Material Transmission Sensors
Motor selection 2/2 Actuation Material Transmission Sensors COMMENT Penn States piezo electric motors (1.8 mm diam, 4 mm long) are too expensive (3300 Euro/each)
8 mm F F Material selection Actuation Material Transmission Sensors 150 mm
Components selection 3300 € 550 € 5 € 8 € 4 € 18 € Actuation Material Transmission Sensors
Modules design embodiment design commercial components detail design control
Index Detail design 1 DOF modules 2 DOF modules End effectors Final solution
1DOF modules 1/5 TECHNICAL PROBLEM • The face gear is not feasible • Link between the orange gear and the pink part • Low torque OVERALL L 17.5mm (motor l 1.5mm) GEAR RATIO 0.625
1DOF modules 2/5 TECHNICAL PROBLEM • Multipole magnet offers low resolution • Multipole magnet is costly • The magnet is difficult to assemble • Low torque
1DOF modules 3/5 TECHNICAL PROBLEM • Consider undercutting for gear design • The gear, if magnetic, is difficult to machine • Low torque Detail design Given for machining
1DOF modules 4/5 TECHNICAL PROBLEM • Optic wires along the arm • This face gear is not machinable • Low torque
1DOF modules family: PROBLEM • Low torque • Too long • Big gear PROBLEM • Low torque • Face gear not machin. PROBLEM • Low torque • Face gear not machin. • Sensor gives low resolution PROBLEM • Low torque • The magnetic gear is not machin. PROBLEM • Low torque • The gear is not machin. • Cabling problems