370 likes | 575 Views
Universidade Federal Fluminense Instituto de Física - Niterói – RJ - Brasil. Topological phase and quantum criptography with spin-orbit entanglement of the photon. Antonio Zelaquett Khoury. Financial Support: CNPq - CAPES – FAPERJ INSTITUTO DO MILÊNIO DE INFORMAÇÃO QUÂNTICA. Outline.
E N D
Universidade Federal Fluminense Instituto de Física - Niterói – RJ - Brasil Topological phase and quantum criptography with spin-orbit entanglement of the photon Antonio Zelaquett Khoury Financial Support: CNPq - CAPES – FAPERJ INSTITUTO DO MILÊNIO DE INFORMAÇÃO QUÂNTICA
Outline • Geom. phase for a spin ½ in a magnetic field • Geometric quantum computation • The Pancharatnam phase • Beams carrying OAM • Topological phase for entangled states • BB84 QKD without a shared reference frame • Conclusions
Spin 1/2 in a time dependent magnetic field BERRY PHASE
Geometric conditional phase gate Conditional phase gate J.A. Jones, V. Vedral, A. Ekert, G. Castagnoll, NATURE V.403, 869 (2000) L.-M. Duan, J.I. Cirac, P.Zoller SCIENCE V.292, 1695 (2001)
Pancharatnam phase S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A, V.44, 247 (1956) Collected Works of S. Pancharatnam, Oxford Univ. Press, London (1975).
Angular momentum Hermite-Gauss (HG) Laguerre-Gauss (LG) (Paraxial Wave Equation) Rectangular Cylindrical Gauss-Laguerre beams carrying OAM
Astigmatic mode converter Cylindrical lenses at 45o Poincaré representation for beams carrying OAM Poincaré representation of first order Gaussian modes
Geometric phase from astigmatic mode conversion E.J. Galvez, P.R. Crawford, H.I. Sztul, M.J. Pysher, P.J. Haglin, R.E. Williams, Physical Review Letters V.90, 203901 (2003)
Topological phase for entangled states C. E. Rodrigues de Souza, J. A. O. Huguenin and A. Z. Khoury IF-UFF P. Milman LMPQ – Jussieu - France
Bloch sphere (or Poincaré sphere) ONE QUBIT TWO QUBITS Two Bloch spheres?? Geometric representation for two-qubit states Only for product states!!!
Two-qubit PURE STATES Geometric representation for two-qubit PURE states P. Milman and R. Mosseri, Phys. Rev. Lett. 90, 230403 (2003). P. Milman, Phys. Rev. A 73, 062118 (2006). Bloch ball SO(3) sphere (opposite points identified) (Concurrence) Bloch ball colapses to a point!!!! Maximally entangled state
SO(3) sphere 0-type trajectories π-type trajectories Topological phase for maximally entangled states Cyclic evolutions preserveing maximal entanglement (“Closed” trajectories) Two homotopy classes:
4 1 3 2 Nonseparable polarization-OAM modes Geometric representation on the SO(3) sphere
Holographic preparation of the LG modes PBS Nonseparable mode preparation
4 1 3 2 4’ Interferometric measurement CCD θ = 0 0 θ = 45 0 θ = - 45 0 θ = 0 0, 22.5 0, 45 0, 67.5 0, 90 0 1 4 3 2 4 1 (θ = 00) / 4’ 1 (θ = 900) 41 θ = 0 0
θ=00 θ=22.50 θ=450 θ=67.50 θ=900 θ=00 θ=22.50 θ=450 θ=67.50 θ=900 Experimental results Unseparable mode Separable mode
Unseparable mode Separable mode Theoretical expressions
Calculated images Unseparable mode Separable mode
Interference pattern (θ=450) CONCURRENCE Partial separability and concurrence Partially separable mode
BB84 Quantum key distribution without a shared reference frame C. E. Rodrigues de Souza, C. V. S. Borges, J. A. O. Huguenin and A. Z. Khoury IF-UFF L. Aolita and S. P. Walborn IF-UFRJ
0 0 V H 45o - 45o 1 1 0 0 Photons 1 1 The BB84 protocol Bennett and Brassard 1984 Polarizers Polarizers HV HV +/- +/- ALICE BOB
Basis • HV • +/- • +/- • +/- • HV • +/- • HV • HV • HV • Result • 0 • 0 • 1 • 1 • 1 • 1 • 0 • 1 • 0 • Basis • +/- • +/- • HV • +/- • HV • HV • HV • +/- • HV • Result • 1 • 0 • 1 • 1 • 1 • 1 • 0 • 0 • 0 Alice and Bob check their basis, but not their results ! ALICE BOB 1 0 0 0 1
Logic basis 0/1 Logic basis +/- Spin-orbit entanglement L. Aolita and S. P. Walborn PRL 98, 100501 (2007) Invariant under rotations ! ! ! !
, , , , , , , BB84 without frame alignment BASIS BASIS Photons ALICE BOB Robust against alignment noise ! ! ! !
BOB ALICE CNOT R(θ) X X R(φ) Procedure sketch 0 1 + -
, State sent by Alice Bob’s detector 1 Bob’s detector 0 Bob’s detector 1 Alice sends 1 Bob’s detector 0 Rotation of Alice’s setup Experimental results Bob`s detection basis:
Conclusions • Spin-orbit entanglement • Topological phase for spin-orbit transformations • Potential applications to conditional gates • Quantum criptography without frame alignment