1 / 28

Type Inference

Type Inference. September 26, 2006. Type Inference. Type inference is typically presented in two different forms: Type inference rules: Rules define the type of each expression Clean and concise; needed to study the semantic properties, i.e., soundeness, of the type system

hayleyw
Download Presentation

Type Inference

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Type Inference September 26, 2006

  2. Type Inference • Type inference is typically presented in two different forms: • Type inference rules: Rules define the type of each expression • Clean and concise; needed to study the semantic properties, i.e., soundeness, of the type system • Type inference algorithm: Needed by the compiler writer to deduce the type of each subexpression or to deduce that the expression is ill typed. • Often it is nontrivial to derive an inference algorithm for a given set of rules. There can be many different algorithms for a set of typing rules. http://www.csg.csail.mit.edu/6.827

  3. A Simple Type System(no polymorphism) first ... http://www.csg.csail.mit.edu/6.827

  4. -calculus with Constants & Letrec There are no types in the syntax of the language! • E ::= x | x.E | E E • | Cond (E, E, E) • | PFk(E1,...,Ek) • | CN0 • | CNk(E1,...,Ek) | CNk(SE1,...,SEk) • | let S in E • PF1 ::= negate | not | ... | Prj1| Prj2 | ... • PF2 ::= + | ... • CN0 ::= Number | Boolean • CN2 ::= cons | ... • Statements • S ::=  | x = E | S; S not in initial terms http://www.csg.csail.mit.edu/6.827

  5. int, bool, ... A Simple Type System • Types • t ::=  base types • | t type variables • |  -> 2Function types • Type Environments • TE ::= Identifiers  Types http://www.csg.csail.mit.edu/6.827

  6. Typing: TE ├ e :  • (App) TE ├ e1 :  -> ’ TE ├ e2 :  •  TE ├ (e1 e2) : ’ • (Abs) • TE ├x.e :  -> ’ • (Var) • TE ├ x :  • (Const) • TE ├ c : t • (Let) • TE ├ (let x = e1in e2) : ’ Simple Type Inference Rules TE + {x : } ├ e : ’ (x : t)  TE typeof(c) = t TE+{x : } ├ e1 : TE+{x : } ├ e2 : ’ http://www.csg.csail.mit.edu/6.827

  7. one such rule for each PF one set of such rules for each data structure type Simple Type Inference Rules cont TE ├ eB : bool TE ├ e1 :  TE ├ e2 :  (Cond) TE ├ Cond(eB, e1, e2) :  (PF) TE ├ (e1 + e2) : int (CN) TE ├ CN(e1 , e2 ) : CN(1 , 2) (Pro) TE ├ Prj1(e) : t1 TE ├ e1 : int TE ├ e2 : int TE ├ e1 : 1TE ├ e2 : 2 TE ├ e: CN(1 ,2) http://www.csg.csail.mit.edu/6.827

  8. Simple Inference Algorithm • W(TE, e) returns (S,) such that S (TE) ├ e :  • The type environment TE records the most general type of each identifier while the substitution S records the changes in the type variables • Def W(TE, e) = • Case e of • x = ... • x.e = ... • (e1 e2) = ... • let x = e1 in e2= ... http://www.csg.csail.mit.edu/6.827

  9. Simple Inference Algorithm (cont-1) • Def W(TE, e) = Case e of • c = ({}, Typeof(c)) • x = if (x  Dom(TE)) then Fail • else let= TE(x); • in ({},  ) • x.e = let (S1, 1) = W(TE + { x : u }, e); • in (S1, S1(u) -> 1) • (e1 e2) = • let x = e1 in e2 • = u’s represent new type variables let (S1, 1) = W(TE, e1); (S2, 2) = W(S1(TE), e2); S3 = Unify(S2(1), 2 -> u); in (S3 S2 S1, S3(u)) let (S1, 1) = W(TE + {x : u}, e1); S2 = Unify(S1(u), 1); (S3, 2) = W(S2 S1(TE) + {x : t1}, e2); in (S3 S2 S1, 2) http://www.csg.csail.mit.edu/6.827

  10. These should probably be type constants Simple Inference Algorithm (cont-1) • Cond(eB ,e1, e2) = • (e1 + e2) = • CN(e1, e2) = • Prj1(e) = let (SB, B) = W(TE, eB); (S1, 1) = W(SB(TE), e1); (S2, 2) = W(S1 SB(TE), e2); S3 = Unify(B, bool); S4 = Unify(1,2); in (S4 S3 S2 S1 SB , S4 S32) let (S1, 1) = W(TE, e1); (S2, 2) = W(S1(TE), e2); S3 = Unify(1, int); S4 = Unify(2, int); in (S4 S3 S2 S1, int) let (S1, 1) = W(TE, e1); (S2, 2) = W(S1(TE), e2); in (S2 S1, CN(1 , 2 )) let (S, ) = W(TE, e); S1 = Unify(, CN(u1,u2))); in (S1 S, S1(u1)) http://www.csg.csail.mit.edu/6.827

  11. Type Inference : Example let f = n.cond ((eq0 n), 1, n*(f (pred n)) in f B A W(, A) = ( [ ] , Int -> Int ) W({f : u1}, n.B) = ([Int -> Int / u1] , Int -> Int) W({f : u1, n : u2}, B) = ([Int -> Int / u1, Int / u2] , Int) W({f : u1, n : u2}, (eq0 n)) = ( [Int / u2] , Bool) Unify(u2 , Int) = [ Int/u2 ] W({f : u1, n : Int}, 1) = ( [ ] , Int) W({f : u1, n : Int}, n*(f (pred n))) = ( [Int -> Int / u1] , Int) W({f : u1, n : Int}, n) = ( [ ] , Int) W({f : u1, n : Int}, f (pred n)) = ( [Int -> u3 / u1] , u3) Unify(u1 , Int -> u3) = [ Int -> u3/u1 ] Unify(Int -> Int -> Int, Int -> u3 -> Int) = [ Int / u3] W({f : Int -> Int}, f ) = ( [ ] , Int -> Int) http://www.csg.csail.mit.edu/6.827

  12. Soundness • The proposed type system is said to be sound if e :  then e indeed evaluates to a value in  • A method of proving soundness: • The semantics of the language is defined in terms of a value space that has integer values, Boolean values etc. as subspaces. • Any expression that may evaluate to a special value “wrong” will not type check. • There is no type expression that denotes the subspace “wrong”. Such proofs tend to be difficult ... http://www.csg.csail.mit.edu/6.827

  13. Some observations • A type system restricts the class of programs that are considered “legal” • It is possible a term in the untyped –calculus may not cause any errors but may not be typeable in a particular type system • let • id = x. x • in • ... (id True) ... (id 1) ... This term is not typeable in the simple type system we have discussed so far. http://www.csg.csail.mit.edu/6.827

  14. Polymorphic Types • let • id = x. x • in • ... (id True) ... (id 1) ... Constraints: id :: t1 --> t1 id :: Int --> t2 id :: Bool --> t3 Does not unify!! Solution: Generalize the type variable id :: t1. t1 --> t1 • Different uses of a generalized type variable • may be instantiated differently • id2 : Bool --> Bool • id1 : Int --> Int When can we generalize? http://www.csg.csail.mit.edu/6.827

  15. now... The Hindley-Milner Type System http://www.csg.csail.mit.edu/6.827

  16. A mini Languageto study Hindley-Milner Types • There are no types in the syntax of the language! • The type of each subexpression is derived by the Hindley-Milner type inference algorithm. • Expressions • E ::= c constant • | x variable • | lx. E abstraction • | (E1 E2) application • | let x = E1in E2 let-block http://www.csg.csail.mit.edu/6.827

  17. A Formal Type System • Types • t ::=  base types • | t type variables • |  -> 2Function types • Type Schemes •  ::= t • |t.  • Type Environments • TE ::= Identifiers Type Schemes Note, all the ’s occur in the beginning of a type scheme, i.e., a type  cannot contain a type scheme  http://www.csg.csail.mit.edu/6.827

  18. Instantiations • Type scheme can be instantiated into a type ’ by substituting types for the bound variables of, i.e., ’ = S  for some S s.t. Dom(S)  BV() - ’ is said to be an instance of (>’) - ’ is said to be a generic instance of s when S maps variables to new variables. =t1...tn.  • Example: • =t1. t1 -> t2 • t3 -> t2 is a generic instance ofs • Int-> t2 is a non generic instance of s http://www.csg.csail.mit.edu/6.827

  19. Generalization aka Closing • Generalization introduces polymorphism • Quantify type variables that are free in  but not free in the type environment (TE) • Captures the notion of new type variables of  Gen(TE,) = t1...tn.  where { t1...tn } = FV() - FV(TE) http://www.csg.csail.mit.edu/6.827

  20. Typing: TE ├ e :  • (App) TE ├ e1 :  -> ’ TE ├ e2 :  •  TE ├ (e1 e2) : ’ • (Abs) • TE ├x.e :  -> ’ • (Var) • TE ├ x :  • (Const) • TE ├ c : t • (Let) • TE ├ (let x = e1in e2) : ’ HM Type Inference Rules TE + {x : } ├ e : ’ (x : )  TE s typeof(c) t TE+{x : } ├ e1 : TE+{x:Gen(TE,)} ├ e2 : ’ http://www.csg.csail.mit.edu/6.827

  21. HM Inference Algorithm • Def W(TE, e) = Case e of • c = ({}, Typeof(c)) • x = • x.e = • (e1 e2) = • let x = e1 in e2 • = u’s represent new type variables if (x  Dom(TE)) then Fail else lett1...tn.= TE(x); in ( { }, [ui / ti] ) • let (S1, 1) = W(TE + { x : u }, e); • in (S1, S1(u) -> 1) let (S1, 1) = W(TE, e1); (S2, 2) = W(S1(TE), e2); S3 = Unify(S2(1), 2 -> u); in (S3 S2 S1, S3(u)) let (S1, 1) = W(TE + {x : u}, e1); S2 = Unify(S1(u), 1);  = Gen(S2 S1(TE), S2(1) ); (S3, 2) = W(S2 S1(TE) + {x : }, e2); in (S3 S2 S1, 2) http://www.csg.csail.mit.edu/6.827

  22. Hindley-Milner: Example A x. let f = y.x in (f 1, f True) B W(, A) = ( [ ] , u1 -> (u1,u1) ) ( [ ] , (u1,u1) ) W({x : u1}, B) = ( [ ] , u3-> u1) W({x : u1, f : u2}, y.x) = W({x : u1, f : u2, y : u3}, x) = ( [ ] , u1) Unify(u2 , u3-> u1) = [ (u3-> u1) / u2 ] Gen({x : u1}, u3 -> u1) = u3.u3-> u1 TE = {x : u1, f : u3.u3-> u1} ( [ ] ,u1) W(TE, (f 1) ) = ( [ ] , u4-> u1) W(TE, f) = W(TE, 1) = ( [ ] , Int ) [ Int / u4,u1 / u5 ] Unify(u4 -> u1, Int-> u5) = ... http://www.csg.csail.mit.edu/6.827

  23. Important Observations • Do not generalize over type variables used elsewhere • Let is the only way of defining polymorphic constructs • Generalize the types of let-bound identifiers only after processing their definitions http://www.csg.csail.mit.edu/6.827

  24. Properties of HM Type Inference • It is sound with respect to the type system. • An inferred type is verifiable. • It generates most general types of expressions. • Any verifiable type is inferred. • Complexity • PSPACE-Hard • DEXPTIME-Complete • Nested let blocks http://www.csg.csail.mit.edu/6.827

  25. Extensions • Type Declarations • Sanity check; can relax restrictions • Incremental Type checking • The whole program is not given at the same time, sound inferencing when types of some functions are not known • Typing references to mutable objects • Hindley-Milner system is unsound for a • language with refs (mutable locations) • Overloading Resolution http://www.csg.csail.mit.edu/6.827

  26. Generic vs. Non-generic type variables HM Limitations:l-bound vs Let-bound Variables • Only let-bound identifiers can be instantiated differently. • let • twice f x = f (f x) • in • twice twice succ 4 • vs. • let • twice f x = f (f x) • foo g = (g g succ) 4 • in • foo twice foo is not type correct ! http://www.csg.csail.mit.edu/6.827

  27. (Gen) TE ├ e : t  FV(TE) TE ├ e : t. (Spec) TE ├ e : t. TE ├e :  [t’/t] (Var) (x : t)  TE TE ├ x :  (Let) TE+{x:} ├ e1: TE+{x:} ├ e2:’ TE ├ (let x = e1in e2) : ’ (App) and (Abs) rules remain unchanged. Puzzle: Another set of Inference rules Sound but no inference algorithm ! http://www.csg.csail.mit.edu/6.827

  28. next time --- Overloading http://www.csg.csail.mit.edu/6.827

More Related