1 / 18

What Can We Learn About the Ejecta from Solar-B/EIS

What Can We Learn About the Ejecta from Solar-B/EIS. P. F. Chen 1,2 , D. H. Brooks 1 , H. Isobe 1 , K. Shibata 1. 1. Kwasan Observatory, Kyoto University, Japan 2. Department of Astronomy, Nanjing University( 南京大学 ), China. From Our Simulations. Chen & Shibata, 2000, ApJ, 545, 524.

hazina
Download Presentation

What Can We Learn About the Ejecta from Solar-B/EIS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. What Can We Learn About the Ejecta from Solar-B/EIS P. F. Chen1,2, D. H. Brooks1, H. Isobe1, K. Shibata1 1.Kwasan Observatory, Kyoto University, Japan 2. Department of Astronomy, Nanjing University(南京大学),China

  2. From Our Simulations Chen & Shibata, 2000, ApJ, 545, 524 Chen, Wu, Shibata, & Fang 2002, ApJ, 572, L99

  3. From the PIs • Scientific Objectives • Flare & CME onset process • Reconnection evidence • …… • Candidate Lines Ca XVII, Fe X--XV, Fe XXIII, Fe XXIV, Si VII, Si X

  4. VDEM & Forward Modeling • VDEM(Velocity differential Emission Measure) It is directly related to the flaring plasma properties • Why Forward Modeling • Inversion Modeling is an ill-posed problem, and should be combined with the Forward Modeling ( resolution of SOHO/CDS is not high enough) • To suggest the most suitable lines for the corresponding phenomenon Coronal Reconnection outflow & Moreton waves

  5. Scenario

  6. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Observer Ca XVII slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  7. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Fe X Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  8. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Fe XI Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  9. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Fe XII Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  10. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Fe XIII Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  11. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Fe XIV Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  12. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Observer Fe XV slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  13. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Fe XXIII Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  14. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Fe XXIV Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  15. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Si VII Observer slit I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  16. T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta Si X Observer Observer Observer slit slit slit I I I Units I 3510-11 photons s-1 cmdetector-2 cmflare-2Å-1 VDEM 1015 photons s-1 (km s-1)-1 cmflare-2

  17. Summary Across the reconnection point upwardly • Ca XVII 192.8 Red shift blue shift with a possible 2 peaks at the blue wing corresponding to the slow shock pair • Fe X 190.04 Besides a static component, one red peak turns to 1-2 blue peaks • Fe XV 284.2 strong line, besides a static component, 1 2 1 blue peaks • Si X 258.4 strong line, besides a static component, 1-2 peaks at the blue wing from the erupting flux rope and CME expansion

  18. Future Research • Contamination from other lines • Jets at multiwavelengths • To construct a G function which weakly depends on T, a1G1+a2G2+a3G3+a4G4+a5G5+……

More Related