720 likes | 1.07k Views
Singular Value Decomposition and Data Management. SVD - Detailed outline. Motivation Definition - properties Interpretation Complexity Case studies Additional properties. SVD - Motivation. problem #1: text - LSI: find ‘concepts’ problem #2: compression / dim. reduction. SVD - Motivation.
E N D
SVD - Detailed outline • Motivation • Definition - properties • Interpretation • Complexity • Case studies • Additional properties
SVD - Motivation • problem #1: text - LSI: find ‘concepts’ • problem #2: compression / dim. reduction
SVD - Motivation • problem #1: text - LSI: find ‘concepts’
SVD - Motivation • problem #2: compress / reduce dimensionality
Problem - specs • ~10**6 rows; ~10**3 columns; no updates; • random access to any cell(s) ; small error: OK
SVD - Definition A[n x m] = U[n x r]L [ r x r] (V[m x r])T • A: n x m matrix (eg., n documents, m terms) • U: n x r matrix (n documents, r concepts) • L: r x r diagonal matrix (strength of each ‘concept’) (r : rank of the matrix) • V: m x r matrix (m terms, r concepts)
SVD - Properties THEOREM [Press+92]:always possible to decomposematrix A into A = ULVT , where • U,L,V: unique (*) • U, V: column orthonormal (ie., columns are unit vectors, orthogonal to each other) • UTU = I; VTV = I (I: identity matrix) • L: singular values, non-negative and sorted in decreasing order
SVD - Example • A = ULVT - example: retrieval inf. lung brain data CS x x = MD
SVD - Example • A = ULVT - example: retrieval CS-concept inf. lung MD-concept brain data CS x x = MD
SVD - Example doc-to-concept similarity matrix • A = ULVT - example: retrieval CS-concept inf. lung MD-concept brain data CS x x = MD
SVD - Example • A = ULVT - example: retrieval ‘strength’ of CS-concept inf. lung brain data CS x x = MD
SVD - Example • A = ULVT - example: term-to-concept similarity matrix retrieval inf. lung brain data CS-concept CS x x = MD
SVD - Example • A = ULVT - example: term-to-concept similarity matrix retrieval inf. lung brain data CS-concept CS x x = MD
SVD - Detailed outline • Motivation • Definition - properties • Interpretation • Complexity • Case studies • Additional properties
SVD - Interpretation #1 ‘documents’, ‘terms’ and ‘concepts’: • U: document-to-concept similarity matrix • V: term-to-concept sim. matrix • L: its diagonal elements: ‘strength’ of each concept
SVD - Interpretation #2 • best axis to project on: (‘best’ = min sum of squares of projection errors)
minimum RMS error SVD - interpretation #2 SVD: gives best axis to project v1
x x = v1 SVD - Interpretation #2 • A = ULVT - example:
SVD - Interpretation #2 • A = ULVT - example: variance (‘spread’) on the v1 axis x x =
SVD - Interpretation #2 • A = ULVT - example: • UL gives the coordinates of the points in the projection axis x x =
x x = SVD - Interpretation #2 • More details • Q: how exactly is dim. reduction done?
SVD - Interpretation #2 • More details • Q: how exactly is dim. reduction done? • A: set the smallest singular values to zero: x x =
SVD - Interpretation #2 x x ~
SVD - Interpretation #2 x x ~
SVD - Interpretation #2 x x ~
SVD - Interpretation #2 Equivalent: ‘spectral decomposition’ of the matrix: x x =
SVD - Interpretation #2 Equivalent: ‘spectral decomposition’ of the matrix: l1 x x = u1 u2 l2 v1 v2
l1 l2 u1 u2 vT1 vT2 SVD - Interpretation #2 Equivalent: ‘spectral decomposition’ of the matrix: m = + +... n
l1 l2 u1 u2 vT1 vT2 SVD - Interpretation #2 ‘spectral decomposition’ of the matrix: m r terms = + +... n n x 1 1 x m
l1 l2 u1 u2 vT1 vT2 SVD - Interpretation #2 approximation / dim. reduction: by keeping the first few terms (Q: how many?) m To do the mapping you use VT X’ = VT X = + +... n assume: l1 >= l2 >= ...
l1 l2 u1 u2 vT1 vT2 SVD - Interpretation #2 A (heuristic - [Fukunaga]): keep 80-90% of ‘energy’ (= sum of squares of li ’s) m = + +... n assume: l1 >= l2 >= ...
SVD - Interpretation #3 • finds non-zero ‘blobs’ in a data matrix x x =
SVD - Interpretation #3 • finds non-zero ‘blobs’ in a data matrix x x =
SVD - Interpretation #3 • Drill: find the SVD, ‘by inspection’! • Q: rank = ?? ?? x x = ?? ??
SVD - Interpretation #3 • A: rank = 2 (2 linearly independent rows/cols) ?? x x = ?? ?? ??
SVD - Interpretation #3 • A: rank = 2 (2 linearly independent rows/cols) x x = orthogonal??
SVD - Interpretation #3 • column vectors: are orthogonal - but not unit vectors: 0 0 x x 0 = 0 0 0 0 0 0 0
SVD - Interpretation #3 • and the singular values are: 0 0 x x 0 = 0 0 0 0 0 0 0
SVD - Interpretation #3 • A: SVD properties: • matrix product should give back matrix A • matrix U should be column-orthonormal, i.e., columns should be unit vectors, orthogonal to each other • ditto for matrix V • matrixLshould be diagonal, with positive values
SVD - Complexity • O( n * m * m) or O( n * n * m) (whichever is less) • less work, if we just want singular values • or if we want first k left singular vectors • or if the matrix is sparse [Berry] • Implemented: in any linear algebra package (LINPACK, matlab, Splus, mathematica ...)
Optimality of SVD Def: TheFrobenius norm of a n x m matrix M is (reminder) The rank of a matrix M is the number of independent rows (or columns) of M Let A=ULVT and Ak = UkLk VkT (SVD approximation of A) Ak is annxm matrix, Uk an nxk, Lk kxk, and Vk mxk Theorem: [Eckart and Young] Among all n x m matrices C of rank at most k, we have that:
Kleinberg’s Algorithm • Main idea: In many cases, when you search the web using some terms, the most relevant pages may not contain this term (or contain the term only a few times) • Harvard : www.harvard.edu • Search Engines: yahoo, google, altavista • Authorities and hubs
Kleinberg’s algorithm • Problem dfn: given the web and a query • find the most ‘authoritative’ web pages for this query Step 0: find all pages containing the query terms (root set) Step 1: expand by one move forward and backward (base set)
Kleinberg’s algorithm • Step 1: expand by one move forward and backward