270 likes | 366 Views
Art of Programming Yangjun Chen Dept. Business Computing University of Winnipeg. Outline: Art of programming. Computing factorial Sorting numbers Computing primes. Computing Factorial.
E N D
Art of Programming Yangjun Chen Dept. Business Computing University of Winnipeg
Outline: Art of programming • Computing factorial • Sorting numbers • Computing primes
Computing Factorial • The factorial of an integer is the product of that number and all of the positive integers smaller than it. • - 5! = 5*4*3*2*1 = 120 • - 50! = • 30414093201713378043612608166064768844377641568960512000000000000
Computing Factorials • A simple class to compute factorials: • public class Factorial { • public static int factorial(int x) { • int fact = 1; • for (int i =2; i <= x; i ++) //loop • fact *= i; //shorthand for: fact=fact*i; • return fact; • } • } • public class ComputingFactorial { • public static void main(String arg[]) { • int a = Factorial.factorial(Integer.parseInt(arg[0])); • System.out.println(a); • }}
Computing Factorials • Recursive Factorials • /** • * This class shows a recursive method to compute factorials. This method • * calls itself repeatedly based on the formula: n! = n*(n-1)! • **/ • public class Factorial2 { • public long factorial(long x) { • if (x == 1) return 1; • else return x*factorial(x - 1); • } • }
Computing Factorials • Caching factorials • public class Factorial3 { • //create an array to cache values 0! Through 20! • Static long[] table = new long[21]; • Static {table[0] = 1;} //factorial of 0 is 1 • //Remember the highest initialized value in the array • static int last = 0; • public static long factorial(int x) { • while (last < x) { • table [last + 1] = table[last]*(last + 1); • last++; • }}
Sorting Numbers • Sorting: • Input n numbers, sort them such that the numbers are ordered increasingly. • 3 9 1 6 5 4 8 2 10 7 • 1 2 3 4 5 6 7 8 9 10
Sorting Numbers • A simple sorting algorithm • main idea: • Algorithm • Input: an array A containing n integers. • Output: sorted array. • 1. i := 2; • 2. Find the least element a from A(i) to A(n); • 3. If a is less than A(i - 1), exchange A(i - 1) and a; • 4. i := i + 1; goto step (2).
Sorting Numbers • A simple sorting algorithm • main idea: • 1st step: 3 9 1 6 5 4 8 2 10 7 • 2nd step: 1 9 3 6 5 4 8 2 10 7 • 1 2 3 6 5 4 8 9 10 7 • … ... swap swap
Sorting Numbers • Sorting program: • import java.lang.*; • public class SortNumber { • public static void sort(double[] nums) { • for(int i = 0; i < nums.length - 1; i++) { • int min = i +1; • for (int j = i+2; j < nums.length; j++) { • if (nums[j] < nums[min]) min = j; • } • if (nums[i] > nums[min]) { • double tmp; • tmp = nums[i]; nums[i] = nums[min]; nums[min] = tmp;} • }}
Sorting Numbers • public static void main (String[] args) { • double[] nums = new double[10]; //Create an array to hold numbers • for(int i = 0; i < nums.length; i++) //Generate random numbers • nums[i] = Math.random()*100; • sort(nums); //Sort them • for (int j = 0; j < nums.length; j++) //Print them out • System.out.println(nums [j] ); • } • }
Sorting Numbers • Quick sort • main idea: • Algorithm quick_sort(from, center, to) • Input: from - pointer to the starting position of array A • center - pointer to the middle position of array A • to - pointer to the end position of array A • Output: sorted array: A’ • 1. Find the first element a = A(i) larger than or equal to A(center) from • A(from) to A(to); • 2. Find the first element b = A(j) smaller than or equal to A(center) from • A(to) to A(from); • 3. If i < j then exchange a and b; • 4. Repeat step from 1 to 3 until j <= i; • 5. If from < j then recursive call quick_sort(from,(from + j)/2, j); • 6. If i < to then recursive call quick_sort(i, (i+ to)/2, to);
center Sorting Numbers • Quick sort • main idea: • 1st step: 3 1 6 5 4 8 10 7 • 2nd step: 3 2 1 5 8 9 10 7 • 3rd step: 3 2 1 4 5 6 8 9 10 7 The center element is 5. from to 9 2 j i 6 4 i = j = 5 greater than 5 Smaller than 5
center center Sorting Numbers from to • 4th step: 4 5 6 10 • 5th step: 1 2 3 4 from to 2 8 1 9 7 3 i = 2 j = 2
6th step: 1 The sequence contains only one element, no sorting. from to center The center element is 4. 7th step: 3 4 i = j = 1 8th step: 4 The sequence contains only one element, no sorting. 1 2 3 4 5
6 7 8 9 10 ... ...
Sorting Numbers - quick sorting 17, 2, 1, 14, 13, 12, 11, 8, 16, 15 3, 4, 6, 1, 10, 9, 5, 20, 19, 18, j i 17, 2, 1, 14, 13, 12, 11, 8, 16, 20 18, 19, 3, 4, 6, 1, 10, 9, 5, 15, 19, 20 3, 4, 6, 1, 10, 9, 5, 15, 16, 18, 17, 2, 1, 14, 13, 12, 11, 8, 18, 8, 17, 2, 1, 14, 13, 12, 11, 19, 20 3, 4, 6, 1, 10, 9, 5, 15, 16, i=17 8, 17, 2, 1, 14, 13, 12, 11 3, 4, 6, 1, 10, 9, 5, 15, 16, j=16
Sorting Numbers • Another Java program for the quick sort: • public class Sorter { • public static void sort (int[] a, int from, int to) { • if ((a == null) || (a.length < 2)) return; • int i = from, j = to; • int center = a[(from + to)/2]; • do { • while ((i < to) && (a[i] < center)) i++; • while ((j > from) && (a[j] > center)) j--; • if (i < j) { int tmp =a[i]; a [i] = a[j]; a[j] = tmp;} • i++; j--; • }while (i <= j);
Sorting Numbers • Another Java program for the quick sort: • if (from < j) sort(a, from, j); • if (i < to) sort(a, i, to); } • }
Sorting by merging • Merging means the combination of two or more ordered sequence into • a single sequence. For example, can merge two sequences: 503, 703, 765 • and 087, 512, 677 to obtain a sequence: 087, 503, 512, 677, 703, 765. • A simple way to accomplish this is to compare the two smallest items, • output the smallest, and then repeat the same process. 503 703 765 087 512 677 503 703 765 512 677 087 703 765 512 677 087 503
Merging algorithm • Algorithm Merge(s1, s2) • Input: two sequences: s1 - x1 x2 ... xm and s2 - y1 y2 ... yn • Output: a sorted sequence: z1 z2 ... zm+n. • 1.[initialize] i := 1, j := 1, k := 1; • 2.[find smaller] if xi yjgoto step 3, otherwise goto step 5; • 3.[output xi] zk.:= xi, k := k+1, i := i+1. If i m, goto step 2; • 4.[transmit yj ... yn] zk, ..., zm+n := yj, ..., yn. Terminate the algorithm; • 5.[output yj] zk.:= yj, k := k+1, j := j+1. If j n, goto step 2; • 6.[transmit xi ... xm] zk, ..., zm+n := xi, ..., xm. Terminate the algorithm;
Merge-sorting • Algorithm Merge-sorting(s) • Input: a sequences s = < x1, ..., xm> • Output: a sorted sequence. • 1. If |s| = 1, then return s; • 2. k := m/2; • 3. s1 := Merge-sorting(x1, ..., xk); • 4. s2 := Merge-sorting(xk+1, ..., xm); • 5. return(Merge(s1, s2));
Computing Primes • Finding the largest prime number smaller than a specified integer: • Input integer m, find p m such that p is a prime and if there is prime p’ > p then p’ must be larger m. • than m. 1 4 6 8 9 10 12 14 15 16 18 20 2 3 5 7 11 13 17 19
2 2 3 3 4 4 Computing Primes • Algorithm • main idea: find primes by eliminating multiples of the form k j, where j is a prime smaller than square-root(m) and k is an integer such that k j m. 2 i j square-root(m) ... ... prime j i 2 2 3 2 i j j 4 2 i ... ... ...
Computing Primes • Import java.lang.*; • public class Sieve { • public static void main(String[] args) { • int max = 100; //Assign a default value • try {max = Integer.parseInt(args[0]);} • catch (Exception e) {} //Silently ignore exceptions. • //Create an array that specifies whether each number is prime or not. • boolean[] isprime = new boolean[max+1]; • //Assume that all numbers are primes, until proven otherwise. • for (int i = 0; i < max; i++) isprime[i] = true; • //We know that that 0 and 1 are not prime. Make a note of it. • isprime[0] = isprime[1] = false;
Computing Primes • //To compute all primes less than max, we need to rule out multiples of all • //integers less than the square root of max. • int n = (int) Math.ceil(Math.sqrt(max)); • for (int i = 0; i <= n; i++) { • if (isprime[i]) { int k = 2; • for (int j = k*i; j < max; j = (k ++)*i) • isprime[j] = false; } • } • int largest; • for (largest = max - 1; !isprime[largest]; largest--); //empty loop body • System.out.println(“The largest prime less than or equal to “ + max + “is ” • + largest); }}
Assignment #1 (Assignment due:Thu. Feb. 8, 2001) 1. What does the "plateform independence" mean? How is it implemented in Java? 2. Summarize the basic concepts used in Java, such as class, method, variable, Constructor, ... (as many as possible) 3. Implement "Caching factorial" and compute 20! using your program. Trace 10 steps of the computation. 4. Implement "quick sort" and sort a sequence containing 20 integers: 3, 4, 6, 1, 10, 9, 5, 20, 19, 18, 17, 2, 1, 14, 13, 12, 11, 8, 16, 15. Trace 10 steps of the computation. 5. Implement "Sieve" and find all the primes smaller than 200 using your program. Trace 10 steps of the computation.