1 / 34

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

Engineering 45. Phase Diagrams (2). Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu. Learning Goals – Phase Diagrams. When Two Elements are Combined, Determine the Resulting MicroStructural Equilibrium State For Example Specify

hei
Download Presentation

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Engineering 45 PhaseDiagrams (2) Bruce Mayer, PE Licensed Electrical & Mechanical EngineerBMayer@ChabotCollege.edu

  2. Learning Goals – Phase Diagrams • When Two Elements are Combined, Determine the Resulting MicroStructural Equilibrium State • For Example • Specify • a composition (e.g., wt%Cu - wt%Ni), and • a temperature (T) • Determine Structure

  3. Phase A Phase B Nickel atom Copper atom Learning Goals.2 – Phase Dia. • Cont: Determine Structure • HOW MANY phases Result • The COMPOSITION of each phase • Relative QUANTITY of each phase

  4. Binary → Two Components 3 Phases (A, B, Liq) Eutectic → Easily Melted Eutectic Point Composition & Temp at Which Pure-Liquid and Pure-Solid CoExisit The Low-Melt Temp Eutectic Point Binary Eutectic Systems

  5. 3 Phases: a, b, L LIMITED Solubility a → Mostly Cu 8.0 wt% Ag b → Mostly Ag 8.8 wt% Cu TE → NO Liquid Below 779 °C CE → Min. Melting-Temp Composition 71.9% Ag T(°C) 1200 L (liquid) 1000 a a L + b L + 779°C 800 b TE 8.0 71 .9 91.2 600 a + b 400 200 8 0 10 0 0 20 4 0 6 0 CE C0, wt% Ag Cu-Ag Binary Eutectic Sys

  6. At the Eutectic Composition there is NO “Mushy Phase” L(CE) (CE) + (CE) Eutectic Transition Cu-Ag system T(°C) 1200 L (liquid) 1000 a L + a b L + 779°C b 800 TE 8.0 71.9 91.2 • At CE the alloy when heated “flashes” to Liquid 600 a + b 400 200 • Eutectic transition Liquid and α&β 80 100 0 20 40 60 CE Co , wt% Ag

  7. For 40wt%Sn-60wt%Pb Alloy at 150 °C Find Phases Present Phase Compositions Phase Fractions At C0 = 40 wt% Sn @ 150C the Phases a b T(°C) 3 00 L (liquid) a L + a b b L + 2 0 0 183 °C 18.3 61.9 97.8 150 a + b 1 00 0 20 4 0 6 0 8 0 10 0 C o C , wt% Sn o Ex: Pb-Sn Binary Eutectic Sys Pb-Sn Phase Diagram

  8. Phase Composition Need to Cast Left for a, and Right for b Ca= 11 wt% Sn Cb= 99 wt% Sn T(°C) 300 L (liquid) a L + a b b L + 200 183°C 18.3 61.9 97.8 C- CO 150 S R S = W = a R+S C- C 100 a + b 99 - 40 59 = = = 67 wt% 99 - 11 88 100 0 11 20 60 80 99 40 CO - C R W C C Co = =  C, wt% Sn C - C R+S 40 - 11 29 = = 33 wt% = 99 - 11 88 Ex: Pb-Sn Eutectic Sys cont. Pb-Sn system • For Phase Fractions Use LEVER Rule

  9. For 40wt%Sn-60wt%Pb at 200 °C T(°C) 300 L (liquid) a L + 220 a b b R L + S 200 183°C 100 a + b 100 17 46 0 20 40 60 80 C CL Co C, wt% Sn Ex: Pb-Sn Eutectic Sys cont. Pb-Sn system • Phases Present → L + α • Phase Compositions • Co = 40 wt% Sn • Cα = 17 wt% Sn • CL = 46 wt% Sn

  10. For 40wt%Sn-60wt%Pb at 200 °C T(°C) CL - CO 46 - 40 = W = a CL - C 46 - 17 300 L (liquid) 6 a L + = = 21 wt% 29 220 a b b R L + S 200 183°C 100 a + b 100 17 46 0 20 40 60 80 C CL Co C, wt% Sn CO - C 23 = W = = 79 wt% L CL - C 29 Ex: Pb-Sn Eutectic Sys cont. Pb-Sn system • The Relative Amounts of L & αby Lever-Law

  11. Consider C01 Wt% Sn Cooled from 350C First Liquid at C0 Then L+ a The a-Particles will Have “Cored” Structure with Very Slight Composition gradient Lastly a @C0 Grains Grow Out from Particles formed in the L+a Phase-Field T(°C) L: C wt%Sn o 4 00 L a L 3 00 a L + a (Pb-Sn) 2 0 0 T a E : C wt%Sn o 1 00 a b + 0 1 0 2 0 3 0 C C , wt% Sn o o 2 (room T solubility limit) 1-Phase Cooling MicroStructure-1 Pb-SnPhaseDiagram

  12. Consider 2wt%Sn < C0 < 18.3wt%Sn Cooled from 325C First Liquid at C0 Then L+a The a-Particles with “Cored” Structure with Significant Comp gradient Next aGrains at Net-C0 Lastly a+b (b Precipitate) b Particles Could have Cored Structure L: C wt%Sn T(°C) o 4 00 L L 3 00 a a L + a : C wt%Sn o a 2 0 0 T E a b 1 00 a b + 0 1 0 2 0 3 0 C , wt% Sn C o 2 o (sol. limit at T ) 18.3 room (sol. limit at T ) E 1-Phase Cooling MicroStructure-2 Pb-SnPhaseDiagram

  13. C0 = CE, Cooled From TE First Liquid at CE Then b+ain Solid State at TE–T In the Solid, Phases Form Compositions at the ENDS of the Eutectic IsoTherm T(°C) L: C wt%Sn o 3 00 L a L + b b L + a 2 0 0 183°C T E a b 1 00 + b : 97.8wt%Sn a : 18.3wt%Sn 0 8 0 2 0 4 0 6 0 100 0 97.8 18.3 C E C , wt% Sn o 61.9 1-Phase Cooling MicroStructure-3 Pb-Sn Phase Diagram • a = 18.3 wt% Sn • b = 97.8 wt% Sn

  14. Eutectic Cooling Forms Lamellar Structure Micrograph of Pb-SnEutecticMicroStructure 160 µm 1-Phase Cooling MicroStructure-4 DumpsPb 61.9 Sn 18.3-SnLEAD Rich 97.8-SnTIN Rich Dumps Sn • Composition Relaxation by Atomic Diffusion

  15. 18.3wt%Sn < C0 < 61.9wt%Sn Ca,max < C0 < CE Result → a-Crystals + eutectic-microstructure Calc Compositions and Phase-Fractions by Lever Rules Ref Levers: L L: C wt%Sn a o T(°C) L a L 3 00 a L + b b L + P Q a 2 0 0 T E P R 1 00 a b + a primary a eutectic b 0 eutectic 8 0 2 0 100 0 4 0 6 0 C 61.9 97.8 18.3 o C , wt% Sn o P R Q 1-Phase Cooling MicroStructure-5 Pb-Sn Phase Diagram

  16. L L: C wt%Sn a o T(°C) L a L 3 00 C a = 18.3wt%Sn a C a = 18.3wt%Sn L + C b = 97.8wt%Sn b b L + P Q a 2 0 0 C = 61.9wt%Sn R L T E W a = =73wt% P R Q P + R W a = = 50 wt% R + Q W b = 27wt% 1 00 a b + W = (1 - W a = 50 wt% ) L a primary a eutectic b 0 eutectic 8 0 2 0 100 0 4 0 6 0 C 61.9 97.8 18.3 o C , wt% Sn o P R Q 1-Phase Cooling MicroStructure-6 Pb-Sn Phase Diagram • Just ABOVE TE in L+a Field • Just BELOW TE

  17. T(°C) L 3 00 a L + b L + 2 0 0 a T b E a b + 1 00 C0 C0 hypoeutectic hypereutectic 0 C , wt% Sn o 8 0 2 0 4 0 6 0 100 0 eutectic 18.3 97.8 61.9 hypoeutectic: C0 = 50wt%Sn hypereutectic: (illustration only) eutectic: C0 = 61.9wt%Sn a b a b a a b b a b a b 175 µm 160 µm eutectic micro-constituent [HYPO/HYPER]-eutectic • HYPOeutectic →BELOW Eutecticcomposition • Yields Island-likea-regions with Lamellar Eutectic Structure • HYPEReutectic →ABOVE EutecticComposition • Yields lsland-likeb-regions withLamellar Eutectic Structure Pb-SnPhaseDiagram

  18. InterMetallic Compounds • An Intermetallic compound forms a line - not an area - because stoichiometry (i.e. composition) is exact by a chemical reaction between the pure constituents Mg2Pb

  19. Eutectoid & Peritectic • Eutectic liquid in equilibrium with two solids • L  α + β • Eutectoid solid phase in equilibrium with two OTHER solid phases • S1 S2 + S3 • Example of Iron-Carbon @ 727 °C: g  α + Fe3C • Peritectic liquid + solid1  solid 2 • L + S1 S2 • Example of Iron-Carbon @ 1493 °C: L + δ g

  20. Peritectic transition  + L Eutectoid transition  +  Eutectoid & Peritectic Cu-Zn Phase diagram

  21. T(°C) 1600 d L 1400 g +L g A L+Fe3C 1200 1148°C (austenite) R S g g 1000 g+Fe3C g g (cementite) a + B 800 727°C = T a g eutectoid R S 6 00 a +Fe C 3 Fe3C 4 00 0 1 2 3 4 5 6 6.7 4.30 0.77 (Fe) C , wt% C o Fe3C (cementite-hard) Ceutectoid a ( ferrite-soft) 120 µm Iron-Carbon Phase Diagram Fe-C Phase Diagram • Two Significant (C0,T) points on the Fe-Fe3C Phase Diagram • Eutectic Point-A • L g + Fe3C • EutectoidPoint-B • ga + Fe3C Result: PEARLITE = Alternating Layers of a and Fe3C Phase

  22. T(°C) 1600 d L 1400 g +L g g g L+Fe C 1200 g 3 1148°C g ( austenite) g g 1000 g +Fe C g g 3 C (cementite) a g g r s 800 727°C a a a g g R S 3 6 00 w a = s /( r + s ) a +Fe C 3 Fe w g = (1- w a ) 4 00 0 1 2 3 4 5 6 6.7 C a o 0.77 a C , wt% C o pearlite a w = w g pearlite a w = S /( R + S ) w = (1- w a ) Fe3C HYPOeutectoid Steel Fe-C Phase Diagram • Cool From Solid Austenite @1460C • @1000C → Grains of g-Only • @~800C → Tiny Islands of a (ferrite) Form Along g-Grain Boundaries • @727+d °C → g + Ferrite in proportions as given by Lever Rule

  23. T(°C) 1600 d L 1400 g +L g g g L+Fe C 1200 g 3 1148°C g ( austenite) g g 1000 g +Fe C g g 3 C (cementite) a g g r s 800 727°C a a a g g R S 3 6 00 w a = s /( r + s ) a +Fe C 3 Fe w g = (1- w a ) 4 00 0 1 2 3 4 5 6 6.7 C a o 0.77 100 µm a C , wt% C o pearlite a w = w g pearlite a w = S /( R + S ) HypoEutectoidSteel w = (1- w a ) Fe3C HYPOeutectoid Steel cont Fe-C Phase Diagram • @727-d °C → ProEutectoid-FERRITE and Pearlite in proportions asgiven by the Lever Rule

  24. T(°C) 1600 d L 1400 g +L g g g L+Fe C 1200 g 1148°C 3 g (austenite) g g 1000 g g +Fe C g 3 C (cementite) Fe C 3 g s r g 800 a g g R S 3 6 00 w = r /( r + s ) a +Fe C Fe3C 3 Fe w g =(1- w ) Fe3C 4 00 0 1 2 3 4 5 6 6.7 C o 0.77 C , wt% C o pearlite w = w g pearlite w a = S /( R + S ) a w = (1- w ) Fe3C HYPEReutectoid Steel Fe-C Phase Diagram • Cool From Solid Austenite @1000C • @1000C → Grains of g-Only • @~860C → Tiny Islands of Cementite Form Along g-Grain Boundaries • @727+d °C → g+ Cementite in proportions as given by Lever Rule

  25. T(°C) 1600 d L 1400 g +L g g g L+Fe C 1200 g 1148°C 3 g (austenite) g g 1000 g g +Fe C g 3 C (cementite) Fe C 3 g s r g 800 a g g R S 3 6 00 w = r /( r + s ) a +Fe C Fe3C 3 Fe w g =(1- w ) Fe3C 4 00 0 1 2 3 4 5 6 6.7 C o 0.77 C , wt% C o pearlite w = w g pearlite w a = S /( R + S ) 60 µm a w = (1- w ) Fe3C HYPEReutectoid Steel cont. Fe-C Phase Diagram • @727–d °C → ProEutectoid-CEMENTITE and Pearlite in proportions asgiven by the Lever Rule HyperEutectoidSteel

  26. WhiteBoard PPT Work Starting Point • Given: 1.8 kg of 1.5 wt%-C Austenite is Cooled 1050C → 725C • Find • ProEutectoid Phase • TOTAL kg’s of Ferrite & Cementite • kg of MicroConstituents Pearlite & ProEu-Phase

  27. HyperEutectoid Steel • PROeutectoid Phase  The FINAL, or Persistent, Phase that is Present ABOVE the Euectoid Temperature • In this Case ProEutectoid Phase is: Fe3C, a.k.a. CEMENTITE

  28. DCcem = 6.7-1.5 DCa = 1.5-.022 Lever Rule for a + Cementite

  29. Total Lever Length DCtot From Lever Rule a +Fe3C • Now Apply Mass Fractions, W, against the Total Mass of 1.8 kg • Thus • Since 1.5 wt%C is Closer to the a Terminous, Then Expect more a

  30. Lever Rule for Pearlite + ProEu DCp = 6.7-1.5 DCFe3C = 1.5-0.76

  31. Total Lever Length DCtot From Lever Rule for Pearlite • Now Apply Mass Fractions, W, against the Total Mass of 1.8 kg • Now All g present at 727+d °C converts to PEARLITE • Since 1.5wt%C is closer to g-line than Fe3C, expect More PEARLITE than ProEutectoid Fe3C

  32. Cementite MicroConstituents • Quantities of the two forms of Cementite • ProEutectoid Cementite = 0.225 kg • Total Cementite = 0.398 kg • Thus Lamellar (Pearlite) Cementite = • Then the Cementite-Form Fractions • ProEutectoid = 225/398 = 56.5% • Pearlitic Cementite = 173/398 =43.5%

  33. Pearlite Mass Balance • Note at the ALL the α-Iron is in the MicroForm of PEARLITE • Recall Mα = 1.402 kg • So Total Pearlite by Phase Addition = • This is the SAME value for Mp as that Calculated by an independent LEVER Rule Calculation

  34. WhiteBoard Work None Today

More Related