1 / 19

A Novel, Highly SEU Tolerant Digital Circuit Design Approach

A Novel, Highly SEU Tolerant Digital Circuit Design Approach. By: Rajesh Garg Sunil P. Khatri Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX. Outline. Background and Motivation Previous Work Our Approach Experimental Results Conclusions.

heinz
Download Presentation

A Novel, Highly SEU Tolerant Digital Circuit Design Approach

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Novel, Highly SEU Tolerant Digital Circuit Design Approach By: Rajesh Garg Sunil P. Khatri Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX

  2. Outline • Background and Motivation • Previous Work • Our Approach • Experimental Results • Conclusions

  3. Charge Deposition by a Radiation Particle • Radiation particles - protons, neutrons, alpha particles and heavy ions • Reverse biased p-n junctions are most sensitive to particle strikes • Charge is collected at the drain nodethrough drift and diffusion • Results in a voltage glitch at the drain node • System state may change if this voltage glitch is captured by at least one memory element • This is called SEU • May cause system failure Radiation Particle VDD G S D _ + n+ n+ Depletion Region + _ + _ E _ + _ E + VDD - Vjn _ + _ + _ + p-substrate B

  4. Modeling a Radiation Particle Strike • Charge deposited (Q) at a node is given by where: Lis the Linear Energy Transfer (MeV-cm2/mg) t is the depth of the collection volume (mm) • A radiation particle strike is modeled by a current pulse as where: tais the collection time constant tb is the ion track establishment constant • The radiation induced current always flows from n-diffusion to p-diffusion

  5. Motivation • Modern VLSI Designs • Vulnerable to noise effects- crosstalk, SEU, etc • Single Event Upsets (SEUs) or Soft Errors • Troublesome for both memories and combinational logic • Becoming increasingly problematic even for terrestrial designs • Applications demand reliable systems • Need to efficiently design radiation tolerant circuits • This is the focus of this talk

  6. Previous Approaches for Radiation Hardening • Gate sizing is done to improve the radiation tolerance of a design (Zhou et al.) • Higher drive capability and higher node capacitance increase immunity to SEU • Selectively harden gates in a circuit to reduce SER by 10X • SEU events are detected using built in current sensors (BICS) (Gill et al.) • Error correction codes (Gambles et al.) • Triple modulo redundancy based approaches (Neumann et. al) • SOI devices are inherently less susceptible to radiation strikes • Still needs other hardening techniques to achieve SEU tolerance • Several other approaches exist to reduce the severity of radiation particle strikes (Heijmen et al., Mohanram et al. )

  7. Our Approach • Phase 1 • Gate level hardening • Phase 2 • Block level hardening • Selectively harden critical gates in a circuit • To keep area and delay overheads low • Reduce SER by 10X

  8. in Gate Level Hardening Approach • A radiation particle strike at a reverse biased p-n junction results in a current flow from n-type diffusion to p-type diffusion • A gate constructed using only PMOS (NMOS) transistors cannot experience 1 to 0 (0 to 1) upset Radiation Particle inp out1p inp & inn VDD - VTN out2 out2 out1 out1n out1p |VTP| INV1 INV2 out1n Radiation Particle inn out2 INV2 INV1 Static Leakage Paths

  9. inp & inn VDD - VTN out1n out1p |VTP| out2 Our Gate Level Hardening Approach Low VT transistors inp inp out1p out1p X out2 out2 out1n X inn out1n Leakage currents are lower by ~100X inn Radiation Tolerant Inverter Modified Inverter

  10. Radiation Tolerant Inverter Radiation Particle Strike inp X Radiation Particle Strike M8 M2 X out1p inp & inn X M4 X M6 out1n out2 out1p X M5 out2 M3 out1n The voltage at out2 is unaffected X M7 M1 A radiation particle strike at any node of the first inverter (radiation tolerant inverter) does not affect the voltage at out2 inn

  11. Radiation Tolerant Inverter • Radiation particle strike at the outputs of INV1 • Implemented using 65nm PTM with VDD=1V • Radiation strike: Q=150fC, ta=150ps & tb=38ps inp out1p out2 out1n inn INV1

  12. Block Level Radiation Hardening • 100% SEU tolerance can be achieved by hardening all gates in a circuit but this will be very costly • Protect only sensitive gates in a circuit to achieve good SEU tolerance or coverage • We obtain these sensitive gates using Logical Masking • PLM (G) is the probability that the voltage glitch due to a radiation particle strike gets logically masked • PSen(G) = 1 – PLM(G) • If we want to protect only 2 gates then we should to protect Gates 1 and 3 to maximize SEU tolerance • Gate 3 is the most sensitive P1 = 0.25 P0 = 0.75 0 0 For all inputs P1 = 0.5 P0 = 0.5 1 1 1 3 2 1 → 1 0 P1 = 0.5 P0 = 0.5 Radiation Particle

  13. Block Level Radiation Hardening • Obtained PSen for all gates in a circuit using a fault simulator • Sort these gates in decreasing order of their PSen • Harden gates until the required coverage is achieved • Coverage is a good estimate for SER reduction (Zhou et al.) • Gates at the primary output of a circuit need to be hardened since PSen = 1 for these gates • The dual outputs of the hardened gates at the primary outputs drive the dual inputs of an SEU tolerant flip-flip (such as the flip-flop proposed by Liu et al.)

  14. Critical Charge (Qcri) • Minimum amount of charge which can result in an SEU event • Our hardened gates can tolerate a large amount of charge dumped by a radiation particle • Operating frequency of circuit determines Qcri • Qcriis the amount of charge which results in a voltage glitch of pulse width T CLK in out1n out1p out2 t1 T + t1 2T + t1

  15. Experimental Results • We implemented a standard cell library L using a 65nm PTM model card with VDD = 1.0V • Implemented both regular and hardened versions of all cell types • Applied our approach to several ISCAS and MCNC benchmark circuits • We implemented • A tool in SIS to find the sensitive gates in a circuit • An STA tool to evaluate the delay of a hardened circuit obtained using our approach • Layouts were created for all gates in our library for both regular and hardened versions

  16. Experimental Results • Average results over several benchmark circuits mapped for area and delay optimality • Our SEU immune gates can tolerate high energy radiation particle strikes • Critical charge is extremely high (>520fC) for all benchmark circuits • Suitable for space and military application because of the presence of large number of high energy radiation particles

  17. Comparison Our Hardening Approach • Our approach is suitable for radiation environments with high energy particles

  18. Conclusions • SEUs are troublesome for both memories and combinational logic • Becoming increasingly problematic even for terrestrial designs • Applications demand reliable systems • Need to efficiently design radiation tolerant circuits • We developed a circuit hardening approach • Area overhead is ~60% • Delay overhead is ~28% • Our approach is suitable for high energy radiation particle environments • Critical charge is >520fC

  19. Thank You

More Related