1 / 37

Perspectives on Climate Modeling Summer school-BNU-Beijing 5 Aug. 2006

Perspectives on Climate Modeling Summer school-BNU-Beijing 5 Aug. 2006. Robert E. Dickinson Georgia Tech. Climate Model – what does it do?. Starts with known physical laws – conservation of momentum, energy, & mass.

helki
Download Presentation

Perspectives on Climate Modeling Summer school-BNU-Beijing 5 Aug. 2006

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Perspectives on Climate ModelingSummer school-BNU-Beijing 5 Aug. 2006 Robert E. Dickinson Georgia Tech

  2. Climate Model – what does it do? • Starts with known physical laws – conservation of momentum, energy, & mass. • Views atmosphere, oceans, land as a continuum (i.e. all spatial scales present satisfying same laws). • Find and uses numerical approximations to the continuum physical laws. • Integrate in time to develop climate statistics same as observed-evaluate success by extent of agreement. • On global scale, this agenda very successful.

  3. Climate Model Scaling/parameterization Need to describe details within the grid boxes

  4. What limits success of climate models? • Processes occur on smaller scales that are different than those resolved on the larger scales. • These: a) affect the large scale rules b) change climate on scales that humans live on. • Have to some extent been recognized for long time – their inclusion has been called “parameterization” but better called “scaling”.

  5. What is the problem? • Many of the practical aspects of climate modeling are centered at the land surface • Such modeling implicitly involves many spatial scaling issues, the more important ones may still be poorly represented; • issue of land coupling to precipitation, • limited by lacks in treatment of moist processes (convection, clouds, aerosol and cloud micro-physics, etc.).

  6. Progression of Progress on this Topic. • Assume state variables on resolved scale: • Temperature, soil moisture, vegetation properties, • Homogeneous turbulent fluxes, uniform precipitation • Look for what not working because of excessive nonlinearity of processes. • Find ways to efficiently include missing effects with adequate realism and generality

  7. Examples of processes needed to be parameterized and how first done. • Clouds and their effect on radiation and precipitation-put in as a fractional cover. • Prescribed from observations; then correlated with relative humidity. • Connections to precipitation neglected. • Precipitation and its connection to humidity. • All atmospheric water in excess of some “critical” relative humidty assumed converted to precipitation and moved to surface as rain or snow.

  8. Other key examples of parameterization. • Boundary layer turbulence-how it exchanges momentum, heat, and moisture between surface and boundary layer, and free atmosphere? • How boundary layer processes connect to clouds and precipitation? • Collective effect of leaves and roots extract water from soil & move to atmosphere? • Moist convection – how make clouds & P?

  9. Collective impact of “subgrid” processes • Dynamical model viewpoint :Q, external parameters, X = state variable; changes according to: d X/ dt = F(X,Q) (1) • X = [X] + X’ , the resolved and unresolved scales. Because of nonlinearities, to solve Eq.(1) for resolved scales, requires introducing some statistics of unresolved scales as additional degrees of freedom.

  10. Climate is a Dynamic System Climate system responses Forces on Climate system IMPACTS Feedbacks Many processes on many scales change and modify the changing state

  11. What has been done & what needed? • Have used simple conceptualizations of processes and with limited observations. • Now with more advanced computational and observational tools, can look much more carefully at details of processes and establish more elaborate and realistic relationships. • E.g. use cloud resolving and and large eddy resolving models. • Advanced field programs and satellite data

  12. Observations very important • Local surface • Meteorological system • Field programs • Aircraft • Satellite • Requires international cooperation and sharing.

  13. TOPEX/Poseidon Aqua SORCE QuikScat Sage TRMM SeaWinds Terra UARS Landsat 7 Grace Spaceborne Earth Observation Systems EO-1 SeaWiFS IceSat ACRIMSAT Toms-EP ERBS Jason

  14. Show Land is very complex – Tibet Plateau from MODIS

  15. Land Scaling from Modeling Perspective • Climate model grid squares have sides of 100 km (within factor of 4 in either direction). • Land-surface model describes processes on spatial scale of about 10 m (“plot or point” scale”). • If scaling assumptions are made part of this description, scale dependent -easily lost in model revision. • e.g. Bonan (1996) LSM model – p 91-canopy evaporation limited to 20% of precipitation, left out of newer CLM.

  16. Rules for Scaling to a Climate Model Plot scale Land-surface Model Global Data Sets Describing Land Interface to Atmospheric Model

  17. Hydrological examples – impacts of scaling • Transpiration and soil evaporation depend nonlinearly on soil moisture. • What if 50% W = 0, and 50% W =1.0,versus W=0.5? ET 50% W

  18. Leaf evaporation of intercepted precipitation. What if P = 0.5 mm/h over all grid-square versus 5 mm/h over 10% of grid square?

  19. How precipitation changed if Tibet Plateau e.g. all at 4.7 km versus a distribution of elevations from 3 km to 6 km?

  20. Radiation Scaling

  21. Current models Reality Thanks to B. Pinty for fig.

  22. What changes if leaf area LAI = 3 of 100% versus 6 over 50% and 0 over 50%? • How can we average the z0 roughness of forest and grasland? • Such vegetation related averaging questionshandled by the widely used “Tiling” approach • Bin by plant types (pfts)+ barren, glacier, lake • Can assume either: • No competition for light, nutrients, water • Competition for water …(single soil column)

  23. Issue of (Land) Complexity • Have a lot of little pieces (e.g. T’s or W’s) • Want to make them add up to one (or a few) pieces • View as a large number of dimensions – want to project to one (or a few) dimensions. • Commonly done by simple averaging of plots but for model may want more stringent physical requirements:

  24. For reduction to low-dimensionality land model • Provide plausible two-way linkages to the large scale atmospheric variables. • Provide connections between the low-dimensional variables. • Maintain conservation of whatever is conserved – energy, moisture, …

  25. Stochastic Viewpoint • An available tool for climate modeling • Science is what we see & efficient ways to summarize & use to infer what we have not seen. • Various forms of mathematics provide such summarizing tools • Climate model formulation has traditionally been deterministic, but has always used statistics for summarizing – and more sophisticated application are mostly recent, e.g. many papers using pdfs to help describe the formation of clouds.

  26. Use of Distributions • If we want to average a function of some variable, f(P), where P here is precipitation, can’t simply put in an “average” P • Need to average f(P) using all the values of P that occur. • May be a lot of detail, but “histogram” summary statistic can provide all that is needed to do the average

  27. Example of a distribution %P

  28. Applied to land in climate model • Suppose N different values of P can occur • Can compute a separate land model for each value – we already do that for different points in space. • Can simply use one of the P’s – chosen randomly –stochastic (Monte Carlo) sampling – doing only one time probably worse than using the average P- but if done enough times, ends up sampling the distribution. • b) is more economical, but it cannot give the land the P made by the atmosphere - fatal

  29. A major old but new issue • How are land processes and P coupled? • Depends on surface fluxes of heat and moisture (long-wave?) • Connects to heterogeneities in these fluxes (elevation, variations in vegetation, soil wetness) • Mediated through boundary layer – Jarvis McNaughton suggested BL damps impacts of vegetation.

  30. qa2 Top of Boundary Layer We qa1 rc

  31. What can be said? • AMIP II simulations – AHS study • GLACE intercomparisons: • Some of problem differences in land model • Some from differences in atmospheric model

More Related