140 likes | 286 Views
S uper WIMP Dark matter. in SUSY with a Gravitino LSP. Shufang Su • U. of Arizona. J. Feng, F. Takayama, S. Su hep-ph/0404198, 0404231. ~. th G v -1 ( gravitional coupling) -2 (comparig to WIMP of weak coupling strength) v too small
E N D
SuperWIMP Dark matter in SUSY with a Gravitino LSP Shufang Su • U. of Arizona J. Feng, F. Takayama, S. Su hep-ph/0404198, 0404231
~ • thG v-1 (gravitional coupling)-2 • (comparig to WIMP of weak coupling strength) • vtoo small • thG too big, overclose the Universe ~ Why gravitino not considered as CDM usually? - However, gravitino can get relic density by other means SuperWIMP
WIMP SWIMP + SM particle - FRT hep-ph/0302215, 0306024 WIMP 104 s t 108 s SWIMP SM Gravitino LSP LKK graviton 106
Outline - • SWIMP dark matter and gravitino LSP • Constraints • Late time energy injection and BBN • NLSP gravitino +SM particle slepton, sneutrino, neutralino - approach I: fix SWIMP=0.23 - approach II: SWIMP=(mSWIMP/mNLSP) thNLSP • Collider phenomenology • Conclusion
~ SWIMP: G (LSP) WIMP: NLSP mG» mNLSP ~ NLSP G + SM particles SWIMP and SUSY WIMP - • SUSY case ~ Ellis et. al., hep-ph/0312262; Wang and Yang, hep-ph/0405186. 104 s t 108 s
/10-10 = 6.1 0.4 Dark matter density G· 0.23 ~ || · 9 £ 10-5 Fixsenet. al.,astro-ph/9605054 Hagiwara et. al., PDG Fields, Sarkar, PDG (2002) Constraints - ~ NLSP G + SM particles CMB photon energy distribution Big bang nucleosynthesis Late time EM/had injection could change the BBN prediction of light elements abundances
had EM had (GeV) EM (GeV) EM » mNLSP-mG Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003) Kawasaki, Kohri and Moroi, astro-ph/0402490 BBN constraints on EM/had injection - • Decay lifetime NLSP • EM/had energy release EM,had=EM,had BrEM,had YNLSP
approach I:fix G = 0.23 ~ m · 80 » 300 GeV 200 GeV · m · 400 » 1500 GeV mG¸ 200 GeV NLSP, EM,had=EM,had BEM,had YNLSP ~ apply CMB and BBN constraints on (NLSP, EM/had) viable parameter space YNLSP: approach I - slepton and sneutrino
G = (mG/mNLSP) thNLSP ~ ~ Approach II: right-handed slepton -
G = (mG/mNLSP) thNLSP ~ ~ Approach II: sneutrino -
Collider Phenomenology - • SWIMP Dark Matter • no signals in direct / indirect dark matter searches • SUSY NLSP:rich collider phenomenology NLSP in SWIMP: long lifetime stable inside the detector • Charged slepton highly ionizing track, almost background free Distinguish from stau NLSP and gravitino LSP in GMSB • GMSB: gravitino m » keVwarm not cold DM • collider searches: other sparticle (mass) • (GMSB) ¿(SWIMP): distinguish experimentally Feng, Murayama and Smith, in preparation.
Sneutrino and neutralino NLSP vs. , 0.23 favor gravitino LSP ~ ~ - • sneutrino and neutralino NLSP missing energy signal: energetic jets/leptons + missing energy Is the lightest SM superpartner sneutrino or neutralino? • angular distribution of events (LC) Does it decay into gravitino or not? • sneutrino case: most likely gravitino is LSP • neutralino case: most likely neutralino LSP • direct/indirect dark matter search positive detection disfavor gravitino LSP • precision determination of SUSY parameter: th, ~ ~
Conclusions - • SuperWIMP is possible candidate for dark matter • SUSY models SWIMP:gravitino LSP WIMP:slepton/sneutrino/neutralino • Constraints from BBN: EM injection and hadronic injection need updated studies of BBN constraints on hadronic/EM injection • Favored mass region • Approach I: fix G=0.23 • Approach II: G = (mG/mNLSP) thNLSP • Rich collider phenomenology(no direct/indirect DM signal) • charged slepton:highly ionizing track distinguish from GMSB • sneutrino/neutralino:missing energy stable or not? ~ ~ ~
~ ~ ~ ~ ~ G G G G G • Decay life time Mpl • SM energy distribution mG SUSY breaking scale NLSP SM NLSP SM ~ SM NLSP SM NLSP SM NLSP