1 / 29

Christian Buck, MPIK Heidelberg

The Double Chooz reactor neutrino experiment. Christian Buck, MPIK Heidelberg. LAUNCH 09 November, 11th 2009. Neutrino oscillations. sin 2 Θ 13. ν 3. sin 2 Θ 23. ν e. Δ m atm 2. ν μ. ν τ. sin 2 Θ 12. ν 2. Δ m sol 2. ν 1. Δ m sol 2 ~ 7.6∙10 -5 eV 2 , sin 2 (2 Θ 12 ) ~ 0.85

hilda
Download Presentation

Christian Buck, MPIK Heidelberg

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Double Chooz reactor neutrino experiment Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009

  2. Neutrino oscillations sin2Θ13 ν3 sin2Θ23 νe Δmatm2 νμ ντ sin2Θ12 ν2 Δmsol2 ν1 Δmsol2 ~ 7.6∙10-5 eV2, sin2(2Θ12) ~ 0.85 Δmatm2 ~ 2.4∙10-3 eV2, sin2(2Θ23) ~ 1

  3. Why Double Chooz? • Improved knowledge of mixing matrix • Key experiment to unveil leptonic CP violation • Discovery potential: hint given by global analysis Fogli et al., arXiv:0905.3549 (2009) • Complementarity to beam experiments • Degeneracies + parameter correlations • Optimize future accelerator experiments • Discrimination power of 0νββ • Safeguard applications,…

  4. Reactor neutrino experiments 1956: First observation (Nobel Prize 1995) 1990s: Chooz, Palo Verde (sin22Θ13< 0.2) • Reactor neutrinos: • Pure νe - beam • Intense flux (~2% precision) • Detection: inverse β-decay • Energy: few MeV 2002: KamLand Δm12, Θ12

  5. Double Chooz collaboration • Spokesman: H. de Kerret (APC) • France: CEA Saclay, APC Paris, Subatech Nantes, IPHC Strasbourg • Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen • USA: Univ. of Alabama, Argonne Nat. Lab., Chicago, Drexel, Kansas State, LLNL, Notre Dame, Tennessee, Columbia Univ., Davis, MIT, Sandia • Spain: CIEMAT Madrid • Japan: Tohoku University, Kobe University, Tokyo Inst. of Tech., Niigata University, Tokyo Metropolitan University, Hiroshima Inst. of Tech. • England: University of Sussex • Russia: RAS Moskau, Kurchatov Institute • Brasil: CBPF Rio de Janeiro, UNICAMP

  6. The Double Chooz principle

  7. Dnear Dfar Survival probability Survival probability assuming sin2(2Θ13) = 0.2 for different Δm13 G. Mention (APC)

  8. Current proposals Double-Chooz RENO Daya bay Kaska Angra

  9. Neutrino signal n 235U prompt • pure e source • Eν~ MeV • Emin ~ 1.8 MeV • > 1020 /(s∙GW) Chooz:~ 7.4GWth e+ 511 keV 511 keV 236U e p n Gd β β  ~ 8 MeV Neutrino rates: • far: ~50/day • near: ~300/day delayed (30 µs) Target: Gadolinium loaded liquid scintillator

  10. Gd Background Accidentals β-n-cascades: 9Li,8He n Long lived! +  E ≥ 1 MeV  ~ 8 MeV fast neutrons Gd n Chooz data: far detector: ca. 1.4/day  ~ 8 MeV

  11. Detector Design • TARGET (2.3m) • Acrylic vessel (8mm) • 10,3 m3 LS (1 g/l Gd) • γ-catcher (0.55m) • Acrylic vessel (12mm) • 22,6 m3 LS • Buffer (1.05m) • Steel (3 mm) • 110 m3 oil 7m • Inner Veto (0.5m) • Steel (10 mm) • 80 m3 LS

  12. Calibration systems z-axis system (glove box) Target Articulated arm GC Guide tube / wire sources Buffer tube Buffer LED system / multi-wavelength

  13. Comparison with Chooz Best limit: CHOOZ sin2(2θ13) < 0.15 (90% CL) for m2atm = 2.5·10-3 eV2 R = 1.01  2.8%(stat)  2.7%(syst) Reactor Detector

  14. Sensitivity Sensitivity 2010 – 2015 (near detector starts < 2 y after far) for m2atm = 2.8·10-3 eV2 2010 Far detector filling early 2010!

  15. Far detector installation Lab cleaning Installation Veto and Veto-PMTs Installation Buffertank

  16. PMT installation

  17. Acrylic vessel installation Arrival Gamma Catcher on-site Acrylic vessels in lab Gamma Catcher transport Gamma Catcher installation

  18. Status October ‘09

  19. Status near detector • Site engineering study completed  excavate 2010 • r = 415 m (115 m w.e.) • Myons (Veto): 250 Hz near detector reactors Laboratory Open ramp (85 m), 14% Tunnel (155 m), 12% Liquid storage Data taking: 2011

  20. Scintillator development (MPIK) • Requirements: • Gd-solubility > 1 g/l • Stability (5 years) • Transparency • Material compatibility • Radiopurity • Target – Gamma catcher matching (optics + density) • Large scale (multi tons) PXE conc, Light yield PPO conc.

  21. Scintillator properties Event localization by pulse shape analysis Gamma Catcher candidates Events Transparency in ROI stable in 10 m range! Target Time [ns]

  22. Large scale production • All components (40 tons) delivered to MPIK • Purifications finalized, prepare for mixing • Scintillator production starts

  23. PMT activities at MPIK • Testing / Calibration • Assembly / Installation • Implementation of data in Double Chooz software • Current upgrade: full detector segment

  24. PMT calibration Calibration program: • HV scans • Single photon electron (P/V) • Transit time • Dark rate • Quantum efficiency

  25. Summary • Goal of Double Chooz reactor neutrino experiment: Determination of mixing angle Θ13 (sin2(2θ13)~ 0.03) • 2-detector concept to reduce systematical error • Detection via inverse β-decay in Gadolinium loaded liquid scintillator • Schedule: • Data taking far detector: Spring 2010 • Near detector: end of 2011 • MPIK: scintillators, PMTs, Analysis

  26. Θ13 and 0νββ M.Lindner, A.Merle, W.Rodejohann, Phys.Rev.D73:073012 (2006) Normal hierarchy: discrimination power of 0νββ-exp. depends on sin2(2Θ13) !

  27. Positron spectrum e+ spectrum Far/Near ratio Far Detetector Stat. Errors sin2(213)=0.12

  28. Sensitivity (rate vs shape)

  29. Robustness

More Related