260 likes | 411 Views
Liquid scintillators. Christian Buck, MPIK Heidelberg. LowNu Reims, October 2009. Overview. Introduction Scintillator components Energy transfers Metal loaded scintillators Summary. Liquid scintillator past. Metal loaded: Reines Bugey Chooz Palo Verde. Unloaded: KamLand
E N D
Liquid scintillators Christian Buck, MPIK Heidelberg LowNu Reims, October 2009
Overview • Introduction • Scintillator components • Energy transfers • Metal loaded scintillators • Summary Reims, Neutrino Champagne 2009
Liquid scintillator past • Metal loaded: • Reines • Bugey • Chooz • Palo Verde • Unloaded: • KamLand • Borexino Reims, Neutrino Champagne 2009
Challenges: Stability and purity Palo Verde: KamLand Background: A.G.Piepke, S.W.Moser, V.M.Novikov; NIM A 342 (1999) 392-398 Chooz: Gd(NO3)3 τ ~ 240 days Chooz Coll.; Eur.Phys.C27, 331-374 (2003) Reims, Neutrino Champagne 2009
Liquid scintillator properties • High energy resolution • Low energy detection threshold • high purity (Borexino) • fast signals (better understanding of timing properties) • moderate cost • Improved stability of metal loaded scintillators Reims, Neutrino Champagne 2009
Liquid scintillator future • Double Chooz, Daya Bay, Reno • SNO+ • LENA,… Reims, Neutrino Champagne 2009
Liquid scintillator components α, β, γ • Solvent • pseudocumene, toluene, anisole • „Safe scintillators“: PXE, LAB, DIN • Admixtures: alkanes, mineral oil • Primary fluor • PPO • BPO • Butyl-PBD,… • Secondary fluor • Bis-MSB • POPOP * PMT Reims, Neutrino Champagne 2009
Comparison solvents: Light yield MPIK measurements M.Chen, INT Workshop 2005 Reims, Neutrino Champagne 2009
Comparison solvents: Attenuation length MPIK measurements(UV/Vis, 10 cm cell) M.Wurm(TUM), ANT 2009 Reims, Neutrino Champagne 2009
Purification methods • Column purification • Radioimpurities • Optics • N2 purging • Radon, 85Kr • Light yield (oxygen) • Water extraction • Radioimpurities (e.g. 40K) • Distillation • Radioimpurities • Optics Reims, Neutrino Champagne 2009
Purification methods KamLand • Column purification • Radioimpurities • Optics • N2 purging • Radon, 85Kr • Light yield (oxygen) • Water extraction • Radioimpurities • Distillation • Radioimpurities • Optics CTF LAK Borexino Solar neutrino phase Reims, Neutrino Champagne 2009
Borexino Background 40K < 3 ∙10-18 g/g 238U: 1.6 ± 0.1∙10-17 g/g 232Th: 6.8 ± 1.5∙10-18 g/g PRL 101, 091302 (2008) Reims, Neutrino Champagne 2009
LAB • LAB is proposed in SNO+, Daya Bay, RENO • New high light yield, transparent solvent? • Used since decades • Average light yield • Average transparency • It is a high flash point, low toxicity solvent at moderate cost and reasonable optics, • …but: • Mixture • Biphenyls (absorption/emission!) • Timing properties LAB (6 g/l PPO) PXE (6 g/l PPO) Reims, Neutrino Champagne 2009
Solvent mixtures Advantage: Parameters tuneable • optimize material compatibility • change timing properties • match density • adjust light yield 6 g/l PPO C.Aberle, diploma thesis, MPIK (2008) • Light production in alkanes • Radiation creates e-- - hole pairs • Recombination, fragmentation, radicals, reactions excited molecules energy transfer to fluors Light yield [% standard] PXE (mass fraction) M.Wurm, diploma thesis, TUM(2005) Reims, Neutrino Champagne 2009
Comparison fluors BPO PPO • transparent • well established • high quantum yield • high(est) • light yield • emission around 400 nm • absorption properties • limited availibility pTP (Butyl-)PBD • high light yield • fast • overlap with bis-MSB • poor quantum yield • costs • low solubility • poor quantum yield Reims, Neutrino Champagne 2009
Energy transfer (non-radiative) Reims, Neutrino Champagne 2009
Critical concentration Critical distance R0: Donor * Acceptor 50 % 50 % Photon emission, decay Energy transfer Critical conc.: For PPO < 1g/l in PXE, PC,… For PPO ~ 2.1 g/l in dodecane Reims, Neutrino Champagne 2009
Light yield model See poster by C.Aberle! C.Buck, F.X. Hartmann, D.Motta. S.Schönert, CPL, 435 (2007) 252 - 256 C.Aberle, diploma thesis, MPIK Heidelberg (2008) Reims, Neutrino Champagne 2009
Timing properties Gamma Catcher candidates Events Target Time [ns] C.Aberle, Diploma thesis, MPIK Heidelberg (2008) D.Motta (CEA Saclay): pulse shape to tag events in different detector regions Reims, Neutrino Champagne 2009
Metal loaded scintillators • Solar neutrinos (LENS, SIREN): • Metal: Ytterbium, Indium, Gadolinium • Challenge: High loadings • Reactor (Double Chooz, Daya Bay, RENO) • Metal: Gadolinium • Challenge: Stability • ββ-decay (SNO+) • Metal: Neodymium • Challenges: transparency; purity Reims, Neutrino Champagne 2009
Indium Indium-loaded scintillators at LLBF > 1 year (2003/04) • MPIK:In(acac)3 (F.X.Hartmann et al.) • INR/LNGS: Carboxylic acid version > 50 g/l Indium D. Motta, C. Buck, F. Hartmann, T. Lasserre, S. Schönert, U.Schwan, NIM A 547 (2005) 368. N.A. Danilov, C.Cattadori, A..di Vacri et al., Radiochemistry 47 (2005) 487-493. Reims, Neutrino Champagne 2009
Gadolinium (Carboxylates) Double Chooz mockup (TMHA, MPIK 2003): INR/LNGS: 2 x 1.2 t Gd-LS (0.1%) in frame of LVD arXiv:0803.1577v1 [physics.ins-det] 11 Mar 2008 • Now used in Daya Bay and RENO • Y.Ding et al., NIM A 584 (2008) 238-243. • M.Yeh et al., NIM A 578 (2007) 329-339. Reims, Neutrino Champagne 2009
Gadolinium (β-diketones) • Purified by sublimation • stability/compatibility tests > 4 y • att. length (1 g/l) > 50 m in ROI • 100 kg produced Reims, Neutrino Champagne 2009
Scintillator production for Double Chooz Scintillator production has started Poster by F.X.Hartmann on DC scintillator chemistry Reims, Neutrino Champagne 2009
Neodymium MPIK (2003): Tests on BDK and CBX versions (F.X.Hartmann et al.) Light yield measurements at LNGS C.Cattadori et al., submitted to NIM A (2009) arXiv:0909.2152v1 [physics.ins-det] 11 Sep 2009 Reims, Neutrino Champagne 2009
Summary • Liquid scintillators key technology for upcoming large scale neutrino detectors • Many solvent and fluor candidates • Choice depends on application and detector characteristics • Requirement for „safe“ scintillators (PXE, LAB,…) • Energy transfer models allow light yield predictions • Several applications for metal loaded scintillators significant improvement in last years (stability etc.) Reims, Neutrino Champagne 2009