1 / 43

Transmittance, scraping and maximum radii for MICE STEPVI

Transmittance, scraping and maximum radii for MICE STEPVI. M. Apollonio – University of Oxford. Amplitude – a single particle concept. x’. Amplitude – also known as ‘single particle emittance’ = SPE Focussing magnetic field  Particle (muon) performs oscillations about beam axis

hoai
Download Presentation

Transmittance, scraping and maximum radii for MICE STEPVI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transmittance, scraping and maximum radii for MICE STEPVI M. Apollonio – University of Oxford MICE coll. meeting 16- RAL - (10/10/2006)

  2. Amplitude – a single particle concept x’ Amplitude – also known as ‘single particle emittance’ = SPE Focussing magnetic field  Particle (muon) performs oscillations about beam axis x’’ + k2(s) x = 0 (Hill’s eqn) k2(s) = focussing strength A = amplitude of betatron oscillations A is constant of motion in linear system Particle moves on ellipse of fixed area = pA in x, x’ space x MICE coll. meeting 16- RAL - (10/10/2006)

  3. Amplitude(single particle property) A = gx2 + 2 axx’ + bx’2 a, b, gare optical (Twiss) parameters Emittance(many particle description) e = rmsamplitude of beam Normalise by multiplying by p/mc Optical parameters from covariance matrix of a set of muons or from magnetic field At focus or in uniform field: A = x2/b+ bx’2 An = (p/mc) A = p x2 /(b mc) + pt2b / (p mc) b = p / (150 [MeV ] B [T] ) in uniform field x’ x xmax = sqrt (b A) MICE can measure single muon amplitudes (ECALC9 does all this) MICE coll. meeting 16- RAL - (10/10/2006)

  4. pt x Scattering HEATS on average COOL by reducing pt  Increase central phase space density, i.e. increase density at low amplitudes MICE coll. meeting 16- RAL - (10/10/2006)

  5. Abs RF Abs RF Abs Absorbers & RF cavities in channel scrape beam Scraping can be described in terms of normalised amplitude An = (p/m) R2/b • Tracker is ‘bigger’ than channel – good! • Note: Full scraping will be seen only in a long channel (1 betatron oscillation) MICE coll. meeting 16- RAL - (10/10/2006)

  6. parameters used in simulation (ICOOL) TRANSMITTANCE Define a VACUUM channel (NO ABS, NO RF) and a large aperture upstream/downstream trackers 40cm + vacuum channel + 40cm + 90cm Evaluate amplitude upstream/downstream and do the ratio=transmission/amplitude Max radius (effect of scraping) and cooling Use the realistic channel (real radii) Select throughoing muons Record the max radius for every z-slice Parameters used in ICOOL simulation Pz=240, 200, (170) MeV/c with no gaussian spread initial emittances: 0.1, 0.3, 0.6, 1.0, 2.0, 3.0 (cm rad) 40000 generated muons per initial emittance 128 positions along Z to study the amplitudes of the beam (Single Particle Emittance) MICE coll. meeting 16- RAL - (10/10/2006)

  7. Scheme for transmission study: No selection on muons Ratio between downstream and upstream particles R=40 cm R=40 cm R=90 cm Zu=-5.2 m Zd=-5.2 m T=Nd/Nu Nd Nu Scheme for max radius and cooling study: selection on muons  only throughgoing accepted Search for max value of radial distribution MICE coll. meeting 16- RAL - (10/10/2006)

  8. RF ABSTracker ICOOL NO material or RF TRANSMISSION Soft edge Compare with long channel Amplitude MICE coll. meeting 16- RAL - (10/10/2006)

  9. the case of a LONG channel (a la NF), ~90 m of MICE repeated cells Bz (T) Pz (GeV/c) Beta (m) m MICE coll. meeting 16- RAL - (10/10/2006)

  10. PZ=200 MeV/c, babs=42 cm e=2.0cm rad e=3.0cm rad Long channel  Harder edge as expected MICE coll. meeting 16- RAL - (10/10/2006)

  11. ~90m of MICE Channel MICE STEP VI MICE coll. meeting 16- RAL - (10/10/2006)

  12. CAVEAT: COOLING USING AMPLITUDE • The RF is designed to work with a beam of ~200 MeV/c • When working with 240/170 MeV/c the RF config should be changed properly • I did it “by hand” changing the phase and the peak voltage • Discovered recently (last analysis PC) MICE coll. meeting 16- RAL - (10/10/2006)

  13. N.B.  RF @ 200 MeV/c: 8.74 MV/m – 90 deg 9.1 MV/m – ph.shift=30 deg P (GeV/c) Still not perfect … P (GeV/c) Pz=170 MeV/c emi=1 mm rad 8.74 MV/m – ph.shift=130 deg Z (m) Pz=240 MeV/c emi=1 mm rad 8.74 MV/m ph.shift=90 Z (m) MICE coll. meeting 16- RAL - (10/10/2006)

  14. beam maximum radius + cooling MICE coll. meeting 16- RAL - (10/10/2006)

  15. 0.1 cm rad 0.3 cm rad 0.6 cm rad 1.0 cm rad 2.0 cm rad 3.0 cm rad PZ=200 MeV/c, babs=42 cm MICE profile in ICOOL sim MICE coll. meeting 16- RAL - (10/10/2006)

  16. 40K m e=0.1cm rad PZ=200 MeV/c, babs=42 cm downstream e=0.3cm rad ratio heating cooling ratio MICE coll. meeting 16- RAL - (10/10/2006)

  17. e=0.6cm rad PZ=200 MeV/c, babs=42 cm e=1.0 cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  18. e=2.0 cm rad PZ=200 MeV/c, babs=42 cm e=3.0 cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  19. 0.1 cm rad 0.3 cm rad 0.6 cm rad 1.0 cm rad 2.0 cm rad 3.0 cm rad PZ=240 MeV/c, babs=42 cm MICE coll. meeting 16- RAL - (10/10/2006)

  20. 40K m e=0.1cm rad PZ=240 MeV/c, babs=42 cm downstream e=0.3cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  21. e=0.6cm rad PZ=240 MeV/c, babs=42 cm e=1.0cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  22. e=2.0cm rad PZ=240 MeV/c, babs=42 cm e=3.0cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  23. 0.1 cm rad 0.3 cm rad 0.6 cm rad 1.0 cm rad 2.0 cm rad 3.0 cm rad PZ=170 MeV/c, babs=15 cm MICE coll. meeting 16- RAL - (10/10/2006)

  24. 40K m e=0.1cm rad PZ=170 MeV/c, babs=15 cm downstream e=0.3cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  25. e=0.6cm rad PZ=170 MeV/c, babs=15 cm downstream e=1.0cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  26. e=2.0 cm rad PZ=170 MeV/c, babs=15 cm downstream e=3.0 cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  27. transmittance MICE coll. meeting 16- RAL - (10/10/2006)

  28. PZ=200 MeV/c, babs=42 cm e=0.1cm rad e=0.3cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  29. e=0.6cm rad PZ=200 MeV/c, babs=42 cm e=1.0cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  30. PZ=200 MeV/c, babs=42 cm e=2.0cm rad e=3.0cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  31. !!!! 4K m !!!! PZ=170 MeV/c, babs=15 cm MICE coll. meeting 16- RAL - (10/10/2006)

  32. PZ=170 MeV/c, babs=15 cm MICE coll. meeting 16- RAL - (10/10/2006)

  33. PZ=170 MeV/c, babs=15 cm MICE coll. meeting 16- RAL - (10/10/2006)

  34. PZ=240 MeV/c, babs=42 cm MICE coll. meeting 16- RAL - (10/10/2006)

  35. PZ=240 MeV/c, babs=42 cm MICE coll. meeting 16- RAL - (10/10/2006)

  36. PZ=240 MeV/c, babs=42 cm MICE coll. meeting 16- RAL - (10/10/2006)

  37. the case of a LONG channel (a la NF), ~90 m of MICE repeated cells Bz (T) Pz (GeV/c) Beta (m) m MICE coll. meeting 16- RAL - (10/10/2006)

  38. PZ=200 MeV/c, babs=42 cm e=0.1cm rad e=0.3cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  39. e=0.6cm rad PZ=200 MeV/c, babs=42 cm e=1.0cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  40. PZ=200 MeV/c, babs=42 cm e=2.0cm rad e=3.0cm rad MICE coll. meeting 16- RAL - (10/10/2006)

  41. MICE coll. meeting 16- RAL - (10/10/2006)

  42. MICE coll. meeting 16- RAL - (10/10/2006)

  43. MICE coll. meeting 16- RAL - (10/10/2006)

More Related