370 likes | 595 Views
Math I Unit 9 Stretches and Compressions. MM1A1 c - Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the x - and y-axes. A. A. B. C. D. ANSWERS:. 1. C 2. B 3. C 4. D 5. B 6. A
E N D
Math I Unit 9Stretches and Compressions MM1A1 c - Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the x- and y-axes.
ANSWERS: 1. C 2. B 3. C 4. D 5. B 6. A 7. Not Possible – No graph! 8. D 9. C 10. A
f(x)=x x x+2 2x xy -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -1 0 1 2 3 4 5 -6 -4 -2 0 2 4 6 f(x)=x f(x)=x+2 f(x)=2x f(x)=-2x f(x)=5x
f(x)=lxl lxl lxl+2 2lxl xy -3 -2 -1 0 1 2 3 3 2 1 0 1 2 3 5 3 3 2 3 4 5 6 4 2 0 2 4 6 f(x)=lxl f(x)=lxl+2 f(x)=2lxl f(x)=-2lxl-2 f(x)=3lxl-1 f(x)=2lx+2l+2
f(x)=x2 x2 x2+2 2x2 xy -3 -2 -1 0 1 2 3 9 4 1 0 1 4 9 11 6 3 2 3 6 11 18 8 2 0 2 8 18 f(x)=x2 f(x)=x2+2 f(x)=2x2 f(x)=3x2-3 f(x)=2(x+2)2+1
f(x)=x3 x3 x3+2 2x3 xy -3 -2 -1 0 1 2 3 -27 -8 -1 0 1 8 27 -25 -6 1 2 3 10 29 -52 -16 -2 0 2 16 52 f(x)=x3 f(x)=x3+2 f(x)=2x3 f(x)=2x3-2 f(x)=-x3+3
f(x)=√x √ x √x+2 2√x xy -4 -1 0 1 4 9 U U 0 1 2 3 U U 2 3 4 5 U U 0 2 4 18 U = UNDEFINED f(x)=√x f(x)=√x+2 f(x)=2√x f(x)=3√x+1 f(x)=-2√x+2 f(x)=3√(x+2)+1
f(x)=√x 3√x+12√x+2 3√(x+2)+1 xy -4 -1 0 1 4 9 U U 1 4 7 10 U U 2 0 -2 -4 X -1 0 2 7 14 Y U 1 7 10 13 U = UNDEFINED f(x)=√x f(x)=√x+2 f(x)=2√x f(x)=3√x+1 f(x)=-2√x+2 f(x)=3√(x+2)+1
f(x)=1/x 1/x 1/x+2 2(1/x) xy -3 -2 -1 0 1 2 3 -1/3 -1/2 -1 U 1 1/2 1/3 12/3 -1 1 U 3 21/2 21/3 -2/3 -1 -2 U 2 1 2/3 U = UNDEFINED f(x)=1/x f(x)=1/x+2 f(x)=2(1/x)
f(x)=1/x 1/x 2/x-2 -3/x+2 xy -3 -2 -1 0 1 2 3 -1/3 -1/2 -1 U 1 1/2 1/3 -22/3 -3 -4 U 0 -1 -11/3 3 31/2 5 U -1 1/2 1 U = UNDEFINED f(x)=2/x-2 f(x)=-3/x+2