1 / 13

Prof. Abel Esteban Ortega Luna

CONGRUENCIA DE TRIÁNGULOS. Prof. Abel Esteban Ortega Luna. http://matematicaabelortega.blogspot.com/. B. E. A. C. D. F. CASOS DE CONGRUENCIA. PRIMER CASO:. LADO – ÁNGULO – LADO ( L – A – L ). . . B. D. E. C. A.

honey
Download Presentation

Prof. Abel Esteban Ortega Luna

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CONGRUENCIA DE TRIÁNGULOS Prof. Abel Esteban Ortega Luna http://matematicaabelortega.blogspot.com/

  2. B E A C D F CASOS DE CONGRUENCIA PRIMER CASO: LADO – ÁNGULO – LADO (L – A – L)  

  3. B D E C A 1) En la figura los triángulos ABC y BDE son equiláteros. Calcula CD, si AE = 3. 60º ABE BDC 60º x = 3 x 3

  4. 2x B 60º x A E D 2) En la figura, calcula el valor de “x”; si AB // CD; AB = DE y CD = AE C ABE DCE 60º x 3x = 60º x = 20º  

  5. B E A C D F SEGUNDO CASO: ÁNGULO – LADO – ÁNGULO (A – L – A)    

  6. B C P A Q 1)En la figura mostrada, si AB = BC; BP = 4 y PQ = 3. Calcula PC. + = 90º   ABQ BPC   4 x = 4 + 3  X x = 7 3 

  7. 5 2) En la figura, halla x/y E ABL EBC  x 2x = y C y x 1 = 2 y 2 3 y 3 B x x 2  L A

  8. B E A C D F TERCER CASO: LADO – LADO – LADO (L – L – L)

  9. 1) Encuentra “x”, si AB = BD, BC = BE, AE = DC B ABE BDC 50º + x 50º 50º A x C D 50º + 50º + x = 180º 100º + x = 180º x = 80º E

  10. 2) Halla “x” B ABM ALE 35º = 50º – x x = 50º – 35º x = 15º L 50º 35º A E 45º 50º x 50–X M

  11. B E A C D F CASO ESPECIAL: ÁNGULO – LADO – LADO MAYOR (A – L – Lm) LADO MAYOR LADO MAYOR  

  12. 1) En la figura, calcule “x” M ARO MOR (A – L – Lm) 3x 60º x = 60º – 3x 60–3x 4x = 60º x = 15º 120º+x R 60º 60º – x 60º 2x 120º+x x 60–2x A O

  13. En el gráfico, calcula “x”, si AB = CD y BC  AD B ABE CED (A – L – Lm) 3X 5x = 45º C x = 9º 2X 45º 45º 3X A D E

More Related