1 / 19

Scilab

Scilab. Aula 3 – Chapter 1 Signals and Systems. Plot: Funções. Lembrando: function[retorno] = nome(param) Ex.: Funcão degrau (Step) t = [-%pi:0.01:%pi] plot (t, degrau(t)). Plot: Funções. Possível Solução…. function[v] = degrau(t) v = []; b = size(t); for u = [1:b(2)]

hu-alvarado
Download Presentation

Scilab

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Scilab Aula 3 – Chapter 1 Signals and Systems

  2. Plot: Funções • Lembrando: function[retorno] = nome(param) Ex.: Funcão degrau (Step) t = [-%pi:0.01:%pi] plot (t, degrau(t))

  3. Plot: Funções • Possível Solução… function[v] = degrau(t) v = []; b = size(t); for u = [1:b(2)] if (t(u)>=0) then v = [v 1]; else v = [v 0]; end end endfunction

  4. Plot: função degrau Use a função isoview(xi,xf,yi,yf): isoview (-4,4,-0.5,2)

  5. Exercício 1 • Defina a função para o sinal abaixo:

  6. Exercício 1 function [r] = pe(t) r = degrau(t-1) - degrau(t-3); endfunction

  7. Signal Operations • Time Reversal φ(t) = pe(-t) plot(t, pe(-t)) φ(t)

  8. Signal Operations • Time Shifting φ(t) = pe(-t+1) φ(t)

  9. Signal Operations • Time Scaling φ(t) = pe(2.5*t) φ(t)

  10. Plot: Função Exponecial est s = a – b * %i t = [-%pi: 0.01: %pi] plot(t, exp(s*t)) • s = 0 • s = a + 0j est = eat(cos bt + j sin bt) • s = 0 + bj • s = a + bj Ex: a = ±1 b = ±2π

  11. Plot: Função Exponecial est • s = 0

  12. Plot: Função Exponecial est • s = a + 0j a > 0 a < 0

  13. Plot: Função Exponecial est • s = 0 + bj // b = ±2πj

  14. Plot: Função Exponecial est • s = a + bj // s = ±1 ± 2*%pi*%i a < 0 a > 0

  15. Plot: Função Exponecial est Possível solução... function[v] = myExpo(t,a,b) s = a + b*%i; v = exp(s*t); endfunction plot(t, myExpo(t,1,2*%pi))

  16. Exercício A partir de x(t) = et e da função degrau, plotar o seguinte sinal:

  17. Integração • [x]=integrate(‘expr’, ‘v’,x0,x1) • Exercício: Calcular a energia do sinal do exercício anterior. Lembrando que: Ex = ∫ x(t)2dt Resposta: 24.036879

  18. Integração • Definindo Logaritimo Natural apartir de sua definição function[res] = ln(x) if (x > 0) then res = integrate('1/t', 't', 1, x); else printf("parametro inválido..!"); res = x; end endfunction

  19. Dúvidas huv@cin.ufpe.br

More Related