270 likes | 410 Views
Color and Image Processing Faculty of Electrical Engineering and Information Technology University of Aachen D-52056 Aachen, Germany Univ. Prof. Dr.-Ing. Bernhard Hill Tel. +49 (0) 241 802 7703; E-mail: hill@ite.rwth-aachen.de. S l. j l. Multispectal Image Capture. Multiprimary Display.
E N D
Color and Image Processing Faculty of Electrical Engineering and Information Technology University of Aachen D-52056 Aachen, Germany Univ. Prof. Dr.-Ing. Bernhard Hill Tel. +49 (0) 241 802 7703; E-mail: hill@ite.rwth-aachen.de Sl jl
Multispectal Image Capture Multiprimary Display Softproof Workstation Color and Image Processing: Main Objectives
Standards developed within IEC TC 100 - TA2: “Color Measurement and Management in Multimedia Systems and Equipment” Represented in Germany by: DKE (Frankfurt) Committee 742.06 “Multimedia Systeme und Geräte -Farbmessung und Farbmanagment-”
Projects and standards: Default RGB colour space - sRGB Extended precision RGB colour space Default YCC colour space - sYCC Equipment using cathode ray tubes Eqipment using liquid crystal display panels Eqipment using plasma displays Colour printers Colour scanners Colour cameras Colour image projectors
X 0.4124 0.3576 0.1805 RsRGB Y = 0.2126 0.7152 0.0722 GsRGB Z 0.0193 0.1192 0.9505 BsRGB red green blue The story of the default RGB color space (sRGB: a display color space IEC 61966-2-1) Linear transformation XYZ matrix(3x3) RGBsRGB nonlinear distortion RGB´sRGB digitization RGB8Bit linear relation between XYZ und sRGB: Primaries according to chromaticities ITU-R BT.709.3
R8Bit 255 0 Nonlinear distortion: R´sRGB 1.0 -> RsRGB 0.0 RsRGB > 0.0031308 R´sRGB = 1.055 RsRGB(1/2.4) - 0.055 RsRGB > 0.0031308 R´sRGB = 12.92 RsRGB 0.0 1.0 R8Bit = round[255 R´sRGB]
chromaticity diagram and sRGB 550 500 typical location of primaries of LCD-displays 600
RGB-Cube and optimal color space 550 500 600 planes of constant lightness spaced DEab = 10 units
RGB-Cube and optimal color space 550 500 600 planes of constant lightness spaced DEab = 10 units
X 0.4124 0.3576 0.1805 RscRGB Y = 0.2126 0.7152 0.0722 GscRGB Z 0.0193 0.1192 0.9505 BscRGB red green blue Scene-oriented and extended RGB colour space IEC 61966-2-2 XYZ matrix(3x3) RGBscRGB linear transformation digitization 16 Bits RGBscRGB(16) linear relation between XYZ und sRGB: Primaries according to chromaticities ITU-R BT.709.3
65535 the range from -0.5 to 1.5 covers the whole space of visible surface colors (optimal color space) RscRGB(16) 16384 12288 8192 range brighter than the white point 127 4096 4096 0 ~7.5 RscRGB(16) = round[8192 RscRGB]+4096 RscRGB 1.5 1.0 0.0 0 1.0 RscRGB --> ~ - 0.5
Optional RGB Colour Space IEC 61966-2-5 Linear transformation XYZ matrix(3x3) RGBsRGB
chromaticity diagram and sRGB 550 wide gamut colour space! 500 600
X 0.5767 0.1856 0.1882 RsRGB Y = 0.2973 0.6274 0.0753 GsRGB Z 0.0270 0.0707 0.9913 BsRGB red green blue Optional RGB Colour Space IEC 61966-2-5 Linear transformation XYZ matrix(3x3) RGBsRGB nonlinear distortion RGB´sRGB digitization RGB8Bit linear relation between XYZ und sRGB: Primaries according to CIE 122:1996 chromaticities
R´opRGB RopRGB(8) 255 1.0 0 0.0 Nonlinear distortion: 1.0 -> RopRGB 0.0 1.0 R8Bit = round[255 R´sRGB] RopRGB(N) = round[(2N-1) R´opRGB] R´opRGB = RopRGB(1/2.2)
Y´sYCC 0.2990 0.5870 0.1140 R´sRGB Cb´sYCC = -0.1687 -0.3312 0.5000 G´sRGB Cr´sYCC 0.5000 -0.4187 -0.0813 B´sRGB Luma-Chroma Color Space sYCC IEC 61966-2-1 Appendix XYZ matrix(3x3) RGBsRGB linear transformation nonlinear distortion (extended gamut) RGB´sRGB matrix(3x3) linear transformation YCC´sYCC digitization 8 Bit YCCsYCC(8) transformation from sRGB´ into sYCC´components:
R´sRGB 1.0 1.0 0.5 0.0 -0.5 extended nonlinear distortion: RsRGB > 0.0031308 R´sRGB = 1.055 RsRGB(1/2.4) - 0.055 -0.0031308 <= RsRGB >= 0.0031308 R´sRGB = 12.92 RsRGB RsRGB < -0.0031308 R´sRGB = -1.055 RsRGB(1/2.4) + 0.055 1.0 -> RsRGB 0.0 1.0
YsYCC(8) 255 - digital values below 0 and above 255 are clipped 0 digitization of sYCC´ components: YsYCC(8) = round[255 Y´sYCC] • the color space covered by sYCC • is larger than that of sRGB • but smaller than the optimal color space! CbsYCC(8) = round[255 Cb´sYCC] + 128 CrsYCC(8) = round[255 Cr´sYCC] + 128
Extended gamut YCC colour space xvYCC IEC 61966-2-4 XYZ matrix(3x3) RGB linear transformation nonlinear distortion (extended gamut) RGB´ linear transformation matrix(3x3) matrix(3x3) YCC´601 YCC´709 ITU-R BT.601 4:3 and 16:9 TV ITU-R BT.709 HDTV YCCxyYCC(8) YCCxyYCC(8) digitization 8 Bit
R´ 1.086 1.0 1.0 0.5 0.0 -0.5 -0.758 extended nonlinear distortion: RsRGB > 0.081 R´ = 1.099 R0.45 - 0.099 -0.081 <= R>= 0.081 R´ = 4.5 R RsRGB < -0.081 R´ = -1.099(-R)0.45 + 0.099 1.0 -> R 0.0 1.0
Y´601 0.2990 0.5870 0.1140 R´ Cb´601 = -0.1687 -0.3312 0.5000 G´ Cr´601 0.5000 -0.4187 -0.0813 B´ Y´709 0.2126 0.7152 0.0722 R´ Cb´709 = -0.1146 -0.3854 0.5000 G´ Cr´709 0.5000 -0.4542 -0.0458 B´ Transformation from RGB´ to xvYCC´ components transformation according to R BT.601 transformation according to R BT.709
- the complete optimal color space is covered digitization of YCC´ components: YxyYCC(8) 255 white point 235 YxyYCC(8) = round[219 Y´nnn + 16] 16 black • higher quantization in 10 Bits or 16 Bits is defined as well 0 CbxvYCC(8) = round[224 Cb´sYCC] + 128 CrxvYCC(8) = round[224 Cr´sYCC] + 128
If you like to experience the standards of the default RGB and YCC colour spaces, look to your TV and DVD multimedia home equipment ! Details of the standards are available from the publications of IEC Thank you for listening !