1 / 21

Production Readiness Review of the MDT ROD

Production Readiness Review of the MDT ROD. Electronic Design Details. MROD-X Design, Changes with respect to the MROD-1 design. MROD-1. MROD-X. 3x. +. SHARC links used for data transport. RocketIO links used for data transport. RocketIO between MROD-In and MOD-Out FPGAs. MROD-In FPGA.

humphries
Download Presentation

Production Readiness Review of the MDT ROD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Production Readiness Reviewof the MDT ROD Electronic Design Details

  2. MROD-X Design, Changes with respect to the MROD-1 design MROD-1 MROD-X 3x + SHARC links used for data transport RocketIO links used for data transport

  3. RocketIObetween MROD-In and MOD-Out FPGAs MROD-In FPGA MROD-Out FPGA Event Data Event Data FIFO 8191 FIFO 511 RdRq 1.6 Gb/s (160 MB/s) HF Event Length (+ID) Event Length (+ID) FIFO 511 FIFO 511 RdRq HF Rocket IO Rocket IO Regis- ters Regis- ters Extended Return Data Extended Return Data FIFO 511 FIFO 511 Return Data Return Data • Backpressure • 8B/10B • Extended Data • Length Look-ahead • TDC Limit High Priority Path Connections from other 7 MROD-In FPGAs Low Priority Path

  4. TDC Limit Register B O T D 1 D 2 D 3 D n E O T } TDC Word Count bits [11:0] n 12 bit, programmable 1 to 4096 data words Example when limit is set to 4: Register default = 0x60 Maximum Event Fragment for 18 TDCs: 18 x (BOT + 96 + 1 EOT) = 1782 words D 1 D 2 D 3 D 4 E O T B O T D 1 D 2 D 3 D 4 D 5 E O T B O T 6 7 D 1 D 2 D 3 D 4 E O T B O T D 1 D 2 D 3 D 4 E O T MROD-Out, Event Builder: Maximum Event Fragment 8 x (1782 + 4 envelope words) = 14288 words B O T 6 7 No shutdown as with “Maximum Event Length” (Default 1K words)

  5. Backpressure and ROD-Busy MROD-In Buffer Memory Partition RocketIO FIFOs S-Link FIFO MROD-In Output Controller MROD-Out Event Builder CSM link 18x 8k 8x 8K 1x 511 X Almost Full Half Full Link FIFO Full • ROD-Busy • Backplane P3 -> TIM • Front panel NIM • Front panel Led Up Busy Error When one of 18 partitions Half Full Or I2O-FIFO Half Full then CSM Link Busy Front panel Led “B” I2O FIFO 512 I2O-FIFO: event fragment complete -> start MROD-In Output Controller Half Full • MROD-In Buffer Memory Partition = 8K words • Consider the situation where a lot of small events are received. Buffer Memory Partition does not get Half Full while I2O-FIFO rapidly fills. • I2O FIFO Half Full signals ROD-Busy.

  6. TTC FIFOs Other busy sources • ROD-Busy • Backplane P3 -> TIM • Front panel NIM • Front panel Led HF Event/Bunch-ID FIFO 511 TTC4 Event/ Bunch-ID De Serialize Event Builder HF Trigger-Type FIFO 511 Load Extended Event-ID Inc De Serialize P3 backplane driven by TIM TTC5 Trigger Type Event/Bunch-ID FIFO 511 MROD-Out SHARC DMA Trigger-Type FIFO 511 • Debug • Test • Monitor TTC1 ECR MROD-Out FPGA

  7. Event Builder (1) Event Fragment Header TTC FIFOs not empty Event Builder 2 1 Event Data Test Count Event-ID RocketIO 1A 3 Test Mode Event Length • Wait for TTC info • Send Header • Repeat • If a channel is enabled (wait for / read) event length entry • then read event data and insert Link Word Count • Until all channels read • Send Trailer 1A Busy 8 x 4 Channel Enable Register Event Data RocketIO 4B 5 Event Length Event Fragment Trailer 4B Busy ROD-Busy

  8. Event Builder (2) • Event Fragment Header • BOF (S-Link Control Word) 0xB0F00000 • Header Marker 0xEE1234EE • Header Size 0x00000009 • Format Version Number (VME register) 0x03000000 • Module ID (VME Register) 0x00610080 • Run number (VME Register) 0x00000000 • Event –ID 0xEEeeeeee • Bunch-ID 0x00000bbb • Trigger-Type 0x000000tt • Detector Event Type (VME Register) 0x00000000 • MROD BOB 0x80eeeeee • Test Mode • Normal Running • eeeeee = from TTC • Test Mode (run without TTC) • eeeeee = from Test Counter TDC Event-ID Miss Match • Event Fragment Trailer • MROD EOB 0xF000wwww • MROD Status word (MSE1) • Number of Status Elements (NSE)0x00000001 • Number of Data Elements (NDE) 0x0000wwww • Status Block Position 0x00000001 • EOF (S-Link Control Word) 0xE0F00000 TDC Bunch-ID Miss Match 31-21 20 19 18 17 16 15-4 3 2 1 0 TDC Parity Error GOL Parity Error

  9. Spy (MROD-In) MROD-In FPGA Event Data FIFO 512 SHARC AF Event Length FIFO 16 AF • Debug • Test • Monitor • Spy Pre-scale register • No • All • One in ‘n’ [1..65536] • MROD-X Mode • MROD-1 Mode • MROD-X Debug Event Data FIFO 8191 MROD-In Output Controller AF Event Length FIFO 511 Rocket IO AF By Default: Main data stream is not halted by Spy Channel

  10. Spy (MROD-Out) MROD-Out FPGA Event Data FIFO 16K SHARC AF Event Length FIFO 4 AF • Debug • Test • Monitor • Spy Pre-scale register • No • All • One in ‘n’ [1..65536] • MROD-X Mode • MROD-1 Mode • MROD-X Debug S-Link FIFO 511 AF Event Builder By Default: Main data stream is not halted by Spy Channel

  11. Test Generator MROD-In (Pre-scaled) Data and Event-Length MROD_In Functionality SFP RocketIO External Loop back Test FIFO SHARC SHARC Links FPGA (Pre-scaled) Data and Event-Length MROD_In Functionality SFP RocketIO Test FIFO FPGA • CSM links unidirectional • Test generator • Transparent / Circular mode • Free running / Triggered • Internal test mode TTC L1A

  12. Remote Configuration (1)FPGA JTAG Chain Geographical Address J26 XCF08P ASP MRO_XCF08P_TDI Configuration Bus MTM bus MROD-Out FPGA_TDO Xilinx XC2VP20 TDI TDO SelSharcF for 3 or 4 MROD-Ins XCF08P FPGA_TDI Configuration Bus Xilinx XC2VP7/20 Xilinx XC2VP7/20 Xilinx XC2VP7/20 Xilinx XC2VP7/20 Xilinx XC2VP7/20 Xilinx XC2VP7/20 Xilinx XC2VP7/20 Xilinx XC2VP7/20 FPGA_TDO4 FPGA_TDO3 MROD-In FPGAs

  13. Remote Configuration (2) to all MROD modules MTM bus P1 buffers buffers P2 USB-JTAG (= Xilinx Download Cable) P3 rear front VME bus

  14. Other Extras FPGA firmware Date and Revision Register Automatically determined during synthesis of VHDL code (TCL script) OS Date Rev. File 31-24 23-16 15-8 7-0 Year Month Date Revision Unique Identifier Registers (DS2401) 31-24 23-16 15-8 7-0 ID1 ID[31-0] ID2 Family-ID CRC ID[47-32] Temperature Readout for each FPGA (MAX 1618) • Zero Suppress Override • choose to override zero suppression: • Never • Once every ‘n’ [1..65536] events (first event of a run always non zero suppressed) S-Link Flush Mode

  15. Production Readiness Reviewof the MDT ROD Prototype issues

  16. Design issues found in prototypes • Parallel termination for MROD-In FPGA configuration bus • Pull-up resistor on FPGA TDO • Wrong polarity for two capacitors • Small errors in silkscreen (Dip switch SW9, Ref. IC511, Pin 1 marking) • Footprint for inductors too small • Short pin 1-2 for SMD LEDs (2 = Anode, 3 = Cathode) • Power On Reset circuit: TPS3838 1 2 2 1 SOT23 SOT23 3 3 MR pin 3 Okay Fail Rst_n pin 4 VDD pin 1,5 Critical Ramp-Rate ~ 125 mV/ms Happens to be exactly VME crate power supply Ramp-Rate!

  17. Minor Assembly issues found in prototypes Assembly house did a great job. Some issues: • One capacitor misplaced (module 1) • Software Test Procedure found 2 open address pins on a Temperature Sensor (module 1) • One wrong component placed. IC511 = NC7SZ125 instead of NC7SZ126 (module 3) • One IC557 missing (NC7SZ08) (module 5) • One wrong component placed. IC564 = NC7SZ08 instead of NC7SZ126(module 5) • Open output pin on buffer, SHARC JTAG chain (module 6) Automatic Optical Inspection would track many, if not all of these failures. Keep in mind that we asked for assembly of 6 modules (4 different production runs): 2 eight-channel, 1 eight-channel, 1 eight-channel without SHARC-B, 2 six-channel

  18. Changes to be made in PCB Needed: • Parallel termination for MROD-In FPGA configuration bus (add 18 resistors) • Add Pull-up resistor to FPGA TDO • Change the polarity for two capacitors • Connect pin 1 and 2 for SOT23 SMD LEDs • Increase Footprint for inductors • Power On Reset (still under investigation… Use MAX 6863?) Needed for MROD-Out @ 50 MHz: • Review Clock circuit on MROD-Out: • Remove automatic Clock switch for selection of LHC-Clock or crystal • Re-route one LHC-Clock signal • MROD-Out FPGA prepared, system operation still to be demonstrated Desirable: • Inverter for GA[4..0] connected to ASP • Review silkscreen(SW9 and IC511, Pin 1 marking)

  19. Thank you

  20. MROD_In MROD_Out Xilinx XC2VP7/20 SFP SHARC SHARC A GOL_XClkA Sharc Clk Rocket XClkA ChA_Clk ChA_Clkx2 ZBT Rocket XClk 80 Xilinx XC2VP20 50/80 80 Robo Clock Clk Clkx2 LHC_Clk ZBT ChB_Clk SHARC B Rocket XClkB ChB_Clkx2 LHC_Clk1 GOL_XClkB 40 40 Sharc Clk Xilinx XC2VP7/20 SFP Robo Clock LHC_CLk2 MROD_In Robo Clock LHC_Clk (From TIM) LHC_Clk3 MROD_In LHC_Clk4 MROD_In S-Link MROD-X Clocks

  21. MROD_In MROD_Out Xilinx XC2VP7/20 SFP SHARC SHARC A GOL_XClkA Sharc Clk Rocket XClkA ChA_Clk ChA_Clkx2 ZBT Rocket XClk 100 100 Xilinx XC2VP20 50/80 Robo Clock Clk Clkx2 LHC_Clk ZBT ChB_Clk SHARC B 50 Rocket XClkB ChB_Clkx2 LHC_Clk1 GOL_XClkB 40 Sharc Clk Xilinx XC2VP7/20 Robo Clock SFP X Robo Clock LHC_CLk2 MROD_In LHC_Clk (From TIM) LHC_Clk3 MROD_In LHC_Clk4 MROD_In S-Link MROD-X Clocks (MROD-Out @ 50 MHz)

More Related