1 / 26

Tuning of Fuzzy PID Controllers

Tuning of Fuzzy PID Controllers. 自動控制原理及設計 教授 : 曾慶耀 博士 學生 : 電研一 鄒長維 19953025. 簡介 :.

ike
Download Presentation

Tuning of Fuzzy PID Controllers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tuning of Fuzzy PID Controllers 自動控制原理及設計 教授:曾慶耀 博士 學生:電研一 鄒長維 19953025

  2. 簡介: • 本文研究Tuned Nonlinear Fuzzy PID、Linear Fuzzy PID、PID 並如何依序逐級由最容易設定gain之Linear PID經Linear Fuzzy PID而達Tuned Nonlinear Fuzzy PID,本來基於非線性致Rise time、Overshoot、Settling time 之Gain factor 原則上設定困難,期望藉Tuning of Fuzzy PID Controllers之後續發展能對 Auto-tuned Fuzzy PID Controllers 打下基礎。 2

  3. Tuned Nonlinear Fuzzy PID設計方向依序分四段: • 1.先Tune a PID Controller • 2.其次Equivalent Linear Fuzzy Controller • 3.再其次Make the Fuzzy controller nonlinear • 4.最後 Fine tune it 。 3

  4. Figure: Proportional controller with load (L) and noise (n) 4

  5. 1st step : Tuning a PID controller • U= Kp (e +l/ Ti∫0t e*dτ + Td(de/dt)) Kp=Proportional gain, U: controller output Ti :integral time Td: the derivative time , e: error (ref-Y) y: Process output Ts: sampling period • 若in discrete approximation則上式Un= Kp (en +l/ TiΣnJ=1 ej* Ts + Td(en-en-1)/ Ts) • n: time instant tuning items : Kp 、Ti、 Td ,當純Propotional controller (P) 時 • Td=0 、1/ Ti=0 則Un= Kp(en) 5

  6. 上圖 proportional gain Kp ,process 在steady state gain =K,process output =X • X= Kp K(Ref-n)/(1+ Kp K) + KL/(1+ Kp K) • 當n、 L =0時 調高Kp 使X接近Ref 當L高值則使系統不夠靈敏因應L,遇n 非零則適調Kp 以免系統靈敏過度反而使干擾影響大 • 若考慮Process動態,當Kp 調整過高,系統將不穩定,因此Kp 之最佳設定在於穩定度、干擾靈敏度及負載調整等取得平衡。 6

  7. Hand-tuning: PID經驗法 • Action Rise time Overshoot Stability • Kp 增 變快 增加 變差 • Td 增 變慢 減少 改善 • 1/ Ti增 變快 增加 變差 • 7

  8. Hand-tuning程序 : • 1.設定Td =0,1/ Ti =0 • 2.調整Kp 使輸出值如預定 • 3.再增加Kp及調Td 使Overshoot 變小 • 4.調整1/ Ti 使不偏離目標值 • 5.重複上述使Kp 越大越好 • 8

  9. 以上PID • 優點:容易感覺此系統變化之掌握 • 缺點: 調整費時且很難確定最佳值 • 9

  10. 2nd step 進入Linear fuzzy controller • 將前述PID之結論改以本階段Linear fuzzy controller去建構而取得同樣之輸出。 • 10

  11. 3rd step: • transfer gains from PID to fuzzy controller • (1)Fuzzy proportional controller (FP) • 11

  12. 12

  13. 由上圖FPD∴E=GE*e • controller output Un=f(GE*en)*GU≒ (GE*en)*GU=GE*GU* en又∵GE*GU=kp • 如果選﹝-100, 100﹞俱為input output universe 則上述近似最佳 • Max.en=1 ( 當ref=step 1 ) 則GE=100 已固定 • ∴GU=Kp/100 • 同理FPD(proportional and derivative control)、FPD+I 如下 • 13

  14. 14

  15. 15

  16. FPD之 Change in error • Cen≒ (en-en-1)/Ts Un=f(GE*en,GCE*Cen)GU≒ (GE*en+GCE*Cen)*GU • =GE*GU*(en+GCE*cen/GE) • 其中GE*GU=Kp • GCE/GE=Td 16

  17. 17 • 在FInc:經推算 • Un=GCE*GCU*﹝GE/GCE Σi=1nei *Ts+en﹞ • 而 GCE*GCU=Kp GE/GCE=1/Ti • FPD+I Un≒GE*GU*﹝en+(GCE*cen/GE)+ien*GIE/GE﹞,而比較知 GE*GU=Kp,GCE/GE=Td,GIE/GE=1/Ti

  18. 比較 • Controller advantage disadvantage • FP simple Maybe too simple • FPD Less overshoot Noise sensitive, • derivative kick • FInc removes steady slow • state error • smooth control signal 18

  19. FPD+I All in one Windup,derivative kick • 結論: • 1.為了儘快穩定且減少overshoot之最佳選擇是FPD 2.考慮穩態誤差則FInc ,FPD+I 是最佳選擇。 19

  20. PID gain 與FUZZY 關係 • Controller Kp 1/Ti Td • FP GE*GU • FInc GCE*GCU GE/GCE • FPD GE*GU GCE/GE • FPD+I GE*GU GIE/GE GCE/GE • 20

  21. 4th-5th step : • 4th step :本階段把前步驟之線性前提在本階段改為非線性,實務上Rule base 採 3 input terms * 3 input terms=9 Rules • 5th step : 本階段細調(Fine-tuning the non-linear fuzzy controller),如何選擇GAIN傳統憑直覺及經驗, • 21

  22. 一般經驗守則如下: • 1.the sample period: .the sample period 取值太短則Cen計算值對雜訊太敏感,一旦sample period改變則gain factor也隨之調整使各增益值完好不變 • 2.GE:GE值太大時因為Ki integral gain 太高致FInc 較不穩定;就FPD言,GE影響proportional gain(Kp) 、derivative gain(Kd),一般使GE儘量大以減少雜訊又同時保持高值proportional gain(Kp)﹔FPD+I而言,一般使GE儘量大寧願犧牲integral gain(Ki)、derivative gain(Kd)以保持高值proportional gain(Kp) 22

  23. 3.GCE:同上述,一般就FPD言,GCE較大是使derivative gain(Kd)變大而不影響到proportional gain(Kp),為減少雜訊GCE儘量小。就FInc而言: GCE較大使proportional gain(Kp)變大而減少integral gain(Ki),因此一般使GCE儘量大以保穩定。就FPD+I 而言,GCE較大則使derivative gain(Kd)增加,因此一般使GCE儘量小。 23

  24. GCU或GU:此二者皆影響proportional gain(Kp),因此一般使GCU、GU儘量大又不致使overshoot太大,如果大過頭將導致系統不穩,若太小則使系統反應慢。 • 24

  25. 摘要及結論 1.Insert a crisp PID and tune it 2.Insert a linear FPD+I 3.Transfer Kp、Td and l/Ti to GE、GCE、GIE and GU 4.Insert a nonlinear rule base 5.Fine-tune using hand-tuning :use GE to improve the rise time ,GCE to dampen overshoot ,and GIE to remove any steady state error 25

  26. 報告完畢 • 謝謝 • 26

More Related