1 / 8

Toets 1

Toets 1. Opgave 1. x=[2 1 3 1 2 1 3] xp=[2 1 3 1 ] % FFT periodic signal: y1=abs(fft(xp)) figure(1) stem(y1) % % define window w=window(@triang,7) % FFT windowed signal y2=abs(fft(w'.*x)) figure(2) stem(y2). a) Periodiek signaal:. b) arb. signaal:. Opgave 2. a).

ilana
Download Presentation

Toets 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Toets 1

  2. Opgave 1 x=[2 1 3 1 2 1 3] xp=[2 1 3 1 ] % FFT periodic signal: y1=abs(fft(xp)) figure(1) stem(y1) % % define window w=window(@triang,7) % FFT windowed signal y2=abs(fft(w'.*x)) figure(2) stem(y2) a) Periodiek signaal: b) arb. signaal:

  3. Opgave 2 a) b) AC= FT-1 (PSDF)

  4. Opgave 3 a) b) a) Voldoende precies aangezien de breedte van de spreiding rond de 4 niveau;’s beduidend kleiner is als de afstand tussen de niveau’s b) 3 1/8 1 3/8 3 1

  5. Opgave 3 c) As a result of symmetry: odd moments are zero 3 Histogram 1 1 3 1 Histogram 2

  6. Opgave 4 a) b) b) a) autocorrelatie Ruis, geen correlatie S/N = 2/(6-2) = 1/2 Periodiciteit 40 S/N = 0.4/(1.6-0.4) = 1/3

  7. Opgave 4c kruiscorrelatie Ja, er is een relatie, verschil in fase van 10 (op periodiciteit van 40) Shift = 10

  8. Opgave 5 Butterworth laag-doorlaat filter orde n

More Related