170 likes | 452 Views
Least squares collocation in OCCAM 6.3. Oleg Titov (Geoscience Australia). IVS Analysis Workshop Meeting , Shanghai 07 March 2014. 07 September 2013. Data analysis. OCCAM 6.3 – least squares collocation method Using full variance-covariance matrix
E N D
Least squares collocation in OCCAM 6.3 Oleg Titov (Geoscience Australia) IVS Analysis Workshop Meeting, Shanghai07 March 2014 07 September 2013
Data analysis • OCCAM 6.3 – least squares collocation method • Using full variance-covariance matrix • Mutual correlation between wet troposphere delays and hydrogen maser variations O. Titov, H. Schuh, IERS Technical Notes 28, 33-41, 2000 O. Titov, Astronomy Reports, 48 (11), 941-948, 2004 Geoscience Australia 06 March 2014
LSM vs LSCM LSMLSCM
OCCAM 6.3 For global solution three-parametrical model is applied for fit; • x – global parameters (source positions); • y – local or ‘arc’ parameters (EOP, daily station coordinates, nutation offsets, etc. • z – stochastic parameters (wet delays, clock offsets).
Wet troposphere delays (Titov, Stanford, Proc of 21st EVGA Worikng Meeting, Helsinki, 2013) Geoscience Australia 06 March 2014
Wet troposphere delays Mean = -4 mm wrms = 6 mm (Titov, Stanford, Proc of 21st EVGA Wiorkng Meeting, Helsinki, 2013) Geoscience Australia 06 March 2014
OCCAM 6.3 • x – global parameters (source positions); • y – local or ‘arc’ parameters (EOP, daily station coordinates, nutation offsets, etc. • z – stochastic parameters (wet delays, clock offsets). • no stochastic parameters !
Application • SINEX files • Plain LSM for data analysis – no piece-wise linear functions, no Kalmanfiltering, no stochastic models, no collocation! Geoscience Australia 07 September 2013
Thank you for attention! Geoscience Australia 07 September 2013