1 / 19

Extended Keyword Index & Improved Search for Semantic e-Catalog

Extended Keyword Index & Improved Search for Semantic e-Catalog. 이동주. Contents. Motivation Semantic e-Catalog Search In e-Catalog Search Strategy Keyword Index Scoring Fucntion CatOnt Conclusion & Future Work. Motivation. Keyword Search

imaran
Download Presentation

Extended Keyword Index & Improved Search for Semantic e-Catalog

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extended Keyword Index & Improved Searchfor Semantic e-Catalog 이동주 IDS

  2. Contents • Motivation • Semantic e-Catalog • Search In e-Catalog • Search Strategy • Keyword Index • Scoring Fucntion • CatOnt • Conclusion & Future Work IDS

  3. Motivation • Keyword Search • e-Catalog take a very important role in e-Business • many people want to search product information using simple keyword • Semantic e-Catalog • legacy e-Catalog couldn’t fully express the various and complex product information and relationship • semantic e-Catalog system needs • suitable search strategy needs IDS

  4. Classification Scheme3 Classification Scheme2 Classification Scheme1 …… …… …… … P3 P4 P2 P1 P4 v v v v v Semantic e-Catalog (1) Attribute Product Data …… IDS

  5. Semantic e-Catalog (2) EC = {E, R}, E = {P, C, A, U} ME ∈ {C, A, U}, MA = {α1, α2, ..., αm} me = {(α, v)| α ∈ MA, v ∈ VALUE} p = { (a, v)| a ∈ A, v ∈ VALUE} R = { (e1, e2, r)| e1 ∈ E1, e2 ∈ E2, E1 ∈ E, E2 ∈ E, r ∈ DR} EC : Electronic Catalog E : Entity R : Relationship DR : Definition of Relationship ME : Meta Entity, MA : Meta Attribute P : Product , C : Classification Scheme A : Attribute, U : Unit Of Measure IDS

  6. Search In e-Catalog Search Query Search Engine Sorted List Query Analyzer Ranker DB Interface e-Catalog DB IDS

  7. Search Strategy • use simple keyword • use semantics implied in e-Catalog • relationship between entities • construct keyword index of entity’s information (values of attributes) • construct extended keyword index with tagging • use semantics implied in search query • extract useful keyword and tag meaning IDS

  8. Extended Keyword Index • extended keyword • (voc, tag1, tag2, …, tagt) • extend the definition of semantic e-Catalog with extended keyword index e = { (a, v)| a ∈ ATT, v ∈ VALUE} if e is Product ATT is A else ATT is MA ivoc = (voc, tag1, tag2, …, tagt) tag1 is a’s identifier e = {ivoc1, ivoc2, …, ivocv} VOC : Vocabulary IDS

  9. Attribute Classification Scheme G2B Attribute Group UOM Classification Scheme GUNGB UOM Group Product (ComAtt) Product (IndAtt) Classification Scheme UNSPSC VOC RDB Structure for Semantic e-Catalog e-Catalog DB IDS

  10. Extracting Keyword Indexes • different extracting mechanism according to attributes • name • description • numeral • just use original IDS

  11. it’s different according to attribute Process of Keyword Index Extraction Analyze Morpheme Structure use KLT module Select possible result Extends the word using dictionaries Eliminate the useless word Count frequency and mark order Eliminate duplicated word Do tagging and return Keyword List IDS

  12. Tags IDS

  13. Scoring Function Score(Q, e) extend the query Q = {q1, q2, …, qi, …, qn} qi = {voc, tag1, tag2, …, tags} from extended definition with extended keyword index e = {ivoc1, ivoc2, …, ivoca} Score(Q, e) = ∑I,jScore(qi, ivocj) generalize with relationship r related e Score(Q, e) = ∑I,jScore(qi, ivocj) + ∑k,lwrk*Score(Q,e’l) wrk : weight of relation rk e’l : related entity using rk Score(qi, ivocj), wr dominate total score IDS

  14. CatOnt • Parser • Loader • easily extensible semi-automated loading tool using XML specification • Searcher • not implemented yet IDS

  15. Loading Process Specification - Entity Converting IDS

  16. Loading Process Specification - Relationship Converting IDS

  17. Loading Process Specification - Keyword Index Construction (1) IDS

  18. Loading Process Specification - Keyword Index Construction (2) IDS

  19. Conclusion & Future Work • Conclusion • propose extended keyword index using various tag for semantic e-Catalog • implement semi-automated converting tool from legacy e-Catalog to semantic e-Catalog with easily extensible XML specification • propose scoring function which extended keyword index is applicable • Future work • contrive feasible scoring function and methods to assign weights of each relationship • implement Searcher • extend this motel to general E-R model IDS

More Related