630 likes | 750 Views
Pietro Luigi Cavallotti with S.Franz, L.Nobili, A.Vicenzo, F.Zhao. Dep. Chemistry, Materials & Eng. Chemistry “G.Natta” Politecnico Milano Italy. Electrokinetics and deposit nanostructure Plenary lecture RSE SEE 2 Symposium Belgrade June 9 2010. Outline. P NI and SCP
E N D
Pietro Luigi Cavallotti with S.Franz, L.Nobili, A.Vicenzo, F.Zhao Dep. Chemistry, Materials & Eng. Chemistry “G.Natta” Politecnico Milano Italy Electrokinetics and deposit nanostructure Plenary lecture RSE SEE 2 Symposium Belgrade June 9 2010
Outline • PNI and SCP • 2. Texture and electrokinetics • 3. Cellular electrodeposition • 4. Electroforming of Ni-Co alloys • PNI and SCP • 2. Texture and electrokinetics • 3. Cellular electrodeposition • 4. Electroforming of Ni-Co alloys
Mg Mgz+ + z e Mc Maqz+ + z e The Born Haber cycle Ideal galvanic cell M / M H / SHE Cell reaction M + zH+ = Mz+aq + (z/2) H2 ionization neutralization h°ion atomization condensation hydration dehydration h°hydr h°at h°cell
° ° ° ° ° ° ° ° ° ° ° ° The Electrochemical Electronegativity For the Metal: ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° For Hydrogen: ° ° ° ° ° °
° ° ° ° ° ° ° ° ° ° ° ° The normality-inertia parameter ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Enthalpic contributions to the Born Haber cycle Standard emf in aqueous solutions and Normality-Inertia parameter of some ECD metals
Secondary Current Pulse Technique deposition cd secondary pulse cd
Transient Behaviour during SCP iP = iC + iF iC = Cads exp(T) ddt iF = iD exp(T) • (t) = BT ln [ (iP/iD) -(iP/iD-1) exp(-iD t / BT Cads)] • BT transient Tafel slope • Cads adsorption pseudo-capacitance
(t) = BT ln [ (iP/iD) -(iP/iD-1) exp(-iD t / BT Cads)]+ +RT/zF (t/)1/2Sand equation i1/2=zFCb(D/4)1/2 CbD1/2= i 1/2 / 1/2F constant parameter SCP with modification of adsorbed layer
Outline • PNI and SCP • 2.Texture and electrokinetics • 3. Cellular electrodeposition • 4. Electroforming of Ni-Co alloys
Pb21M pH 2 T room 5mA/cm2 1h 20 18 16 14 12 ( m 10 V) h 8 6 4 2 0 -2 0 500 1000 1500 2000 2500 3000 3500 m time ( s) 5k Pb (111) 4k Pb (200) 3k Pb (311) a.u. Pb (331) Pb (220) 2k Pb (420) Sub Pb (400) Pb (222) 1k Pb (422) Sub Sub Sub Sub Sub Sub Sub 0 20 30 40 50 60 70 80 90 100 q a 2 Cuk SCP 10, 15, 25, 35 mA/cm2 Bt14mV/dec Cads30F/cm2
CuSO41M, H2SO40.5M T room, 10mA/cm2 SCP 20, 50, 90, 130mA/cm2 Bt95mV/dec Cads20F/cm2 20ms
SCP of Co ECD solutions Co21M H3BO30.5M pH 4 10 mA/cm2 B 162 mV/dec Cads 55mF/cm2 Co21M Sulfamide 5mM pH 6 10 mA/cm2 B 50 mV/dec Cads 122mF/cm2
Electrokinetics and structure of CoECD PO [00.1] PO [11.0] PO [10.0]+[11.0]
Lateral growth PO 00.1 BT<RT/F stable hydrolysed species with surface inhibition maximum nucleation activity, easy epitaxial growth Outgrowth PO 11.0 RT/F<BT<3RT/2F inhibition relatively low and confined to the interface weak nucleation activity and easy growth pH intermediate with hydrolytic products only at surface Clustergrowth PO10.0+11.0 BT=2.5÷3RT/F complexes at the surface with boric acid twinned nuclei from cooperative adsorption Cobalt Growth Modes
Texture of Co electrodeposits Cellular cobalt Twinned cobalt
Outline • PNI and SCP • 2. Texture and electrokinetics • 3. Cellular electrodeposition • 4. Electroforming of Ni-Co alloys
Cellular cobalt electrodeposition Co(NH2SO3)2 1M pH 6.0 cd 10 mA/cm2 22°C BT 50 mV/dec Cads 122 F/cm2
Morphological instability in electrodeposition stabilization instability • H amplitude of mode • y coordinate normal to the surface • k surface curvature • v molar volume of the deposited metal • surface excess free energy • electrochemical potential of metal ion in solution z metal ion charge • overvoltage D.Barkey Adv. Electrochem. Sci&Eng Vol.7 p.151 2002
Cellular growth interpretation ks solution conductivity Nernst diffusion layer thickness Fe electrostatic field Fc concentration field Fs surface excess free energy term Wc concentration Wagner number Wa activation Wagner number
Cellular growth interpretation If i << iL : Introducing a surface profile: y = H sinx with = 2/ the sign of will depend on the sign of : with = 2 2 The values for Co in its solution are: v=7 10-6m3/mole; =0.3J/m2; z=2; F=105C/eq; ks=1-1cm-1 and assuming i=70A/m2we obtain:
Cellular growth interpretation The strong inhibition conditions can decrease the conductivity in the adsorbed layer to very low values ks= 0.01 -1cm-1 and also the surface tension could be less e.g. 0.15 J/m2, in this case: The influence of the current density is to decrease , in agreement with the experimental results
Cellular coatings Surface definition is crucial for further developments, such as dry lubrication, with a solid lubricant deposited or adsorbed between the columns
Conclusions on cellular electrodeposition • When the growth front is controlled by strong inhibition inhibition, lateral growth can be established giving rise to cellular growth. • Cellular growth occurs in intermediate conditions between normal and dendritic growth. • It was observed for Cobalt, Cobalt-Platinum, Copper, Zinc and Gold. • Immediate application regards dry lubrication and hard magnetic features.
Outline • PNI and SCP • 2. Texture and electrokinetics • 3. Cellular electrodeposition • 4. Electroforming of Ni-Co alloys
Nickel Nickel–Cobalt Electroforming for avionic profiles
NiCo electroforming Co2+ = 5 g/l Co(SO3NH2)2 3.3 or 8.5 10-2M Ni–30Co
XRD peaks of NiCo deposits Sample elf1 10 mA/cm2 grain size ≈ 19.7 nm microstrain ≈ 1.5×10–4 Sample elf6 15 mA/cm2 grain size ≈ 25.4 nm Microstrain ≈ 3.3×10–4
Williamson Hall approach Sample elf1 10 mA/cm2 d≈19.7 nm ε≈1.5×10–4 Sample elf6 15 mA/cm2 d≈25.4 nm ε≈3.3×10–4
Indentation test Vickers 200mN 10s 200mN reload 50% 20 cycles
Tensile test Young modulus 220GPa