1 / 14

Lecture 12. Mechanical Properties

Lecture 12. Mechanical Properties. True Stress True Strain. Engineering Stress < True Stress.

ince
Download Presentation

Lecture 12. Mechanical Properties

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 12.Mechanical Properties

  2. True Stress True Strain Engineering Stress < True Stress

  3. The mechanical properties of a polymer involve its behavior under stress. These properties tell a polymer scientist or engineer many of the things he or she needs to know when considering how a polymer can be used. How strong is the polymer? How much can you stretch it before it breaks? How stiff is it? How much does it bend when you push on it? Is it brittle? Does it break easily if you hit it hard? Is it hard or soft? Does it hold up well under repeated stress? The mechanical properties of polymers are one of the features that distinguishes them from small molecules.

  4. Poisson's ration is the ratio of transverse contraction strain to longitudinal extension strain in the direction of stretching force. Tensile deformation is considered positive and compressive deformation is considered negative. The definition of Poisson's ratio contains a minus sign so that normal materials have a positive ratio. Change in volume during Deformation Poisson's ratio: why usually positiveVirtually all common materials become narrower in cross section when they are stretched. The reason why, in the continuum view, is that most materials resist a change in volume as determined by the bulk modulus K more than they resist a change in shape, as determined by the shear modulus G.

  5. Change in volume during Deformation Poisson’s Ratio

  6. A stress-strain curve is a graph derived from measuring load (stress - σ) versus extension (strain - ε) for a sample of a material. The nature of the curve varies from material to material. The following diagrams illustrate the stress-strain behavior of typical materials in terms of the engineering stress and engineering strain where the stress and strain are calculated based on the original dimensions of the sample and not the instantaneous values. In each case the samples are loaded in tension although in many cases similar behaviour is observed in compression. isotropic material:  A material which has the same mechanical properties in all directions.

  7. Increasing temperature

  8. In class quiz

More Related