160 likes | 313 Views
Š tefan Kozák, Department of Automatic Control Systems, Faculty of Electrical Engineering and Information Technology Slovak University of Technology Bratislava email: stefan. kozak@stuba.sk www.kasr.elf.stuba.sk. Príklady modelovania /Slovak version/ Multilayers perceptron - modelling.
E N D
Štefan Kozák, Department of Automatic Control Systems, Faculty of Electrical Engineering and Information Technology Slovak University of Technology Bratislava email:stefan.kozak@stuba.sk www.kasr.elf.stuba.sk Príklady modelovania/Slovak version/Multilayers perceptron - modelling
Vybrané metódy a m-fily pre modelovanie lineárnych a nelineárnych procesov–Matlab-UNS • Vybrané m-fily potrebné pre modelovanie procesov a ich nadväznosť pre trénovanie a simuláciu: • newff vytvorenie feed-forward UNS (backpropagation network) • train trénovanie UNS • simsimulácia siete pre trénované a nové udaje
Vybrané metódy a m-fily pre modelovanie lineárnych a nelineárnych procesov–Matlab-UNS • NEWFF Create a feed-forward backpropagation network. • Syntax • net = newff • net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) • Opis a charakteristika • NET = NEWFF tvorba novej NN siete • NEWFF(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes, • PR - Rx2 matrix of min and max values for R input elements. • Si - Size of ith layer, for Nl layers. • TFi - Transfer function of ith layer, default = 'tansig'. • BTF - Backprop network training function, default = 'trainlm'. • BLF - Backprop weight/bias learning function, default = 'learngdm'. • PF - Performance function, default = 'mse'. • and returns an N layer feed-forward backprop network. • The transfer functions TFi can be any differentiable transfer • function such as TANSIG, LOGSIG, or PURELIN. • Algorithm • Feed-forward networks consist of Nl layers using the DOTPROD • weight function, NETSUM net input function, and the specified • transfer functions. • The first layer has weights coming from the input. Each subsequent • layer has a weight coming from the previous layer. All layers • have biases. The last layer is the network output. • Each layer's weights and biases are initialized with INITNW. • Adaption is done with TRAINS which updates weights with the • specified learning function. Training is done with the specified • training function. Performance is measured according to the specified • performance function. • See also NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS
The training function BTF can be any of the backprop training • functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc. • *WARNING*: TRAINLM is the default training function because it • is very fast, but it requires a lot of memory to run. If you get • an "out-of-memory" error when training try doing one of these: (1) Slow TRAINLM training, but reduce memory requirements, by • setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.) • (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM. • (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG. • The learning function BLF can be either of the backpropagation • learning functions such as LEARNGD, or LEARNGDM. • The performance function can be any of the differentiable performance
TRAIN Trénovanie UNS. Syntax [net,tr,Y,E,Pf,Af] = train(NET,P,T,Pi,Ai,VV,TV) TRAIN trains a network NET according to NET.trainFcn and NET.trainParam. TRAIN(NET,P,T,Pi,Ai) , NET - Network. P - Vstupy do siete. T - Ziadaný výstup (targets, default = zeros). Pi - Initial input delay conditions, default = zeros. Ai - Initial layer delay conditions, default = zeros. VV - Structure of validation vectors, default = []. TV - Structure of test vectors, default = []. and returns, NET - New network. TR - Training record (epoch and perf). Y - Network outputs. E - Network errors. Pf - Final input delay conditions. Af - Final layer delay conditions.
Príklad (Vytvorenie UNS siete – modelovanie) • P- vstupov, T (target) cieľové – žiadané hodnoty • Vstupný vektor: P = [0 1 2 3 4 5 6 7 8 9 10]; • Žiadaný vektor: T = [0 1 2 3 4 3 2 1 2 3 4]; • Úloha : • - Typ siete Trojvrstvová sieť, Vstupy sú v rozsahu < 0-10>. • Aktivačná funkcia v skrytej vrstve je typu TANSIG • - Výstup je jeden s aktivačnou funkciou typu PURELIN • vrstva je typu • Trénovacia metóda TRAINLM (Levenberg-Marquardt) • Počet trénovacích epoch 50
0 1 2 3 4 5 6 7 8 9 10 bias bias Y PURELIN TANSIG - + T
Programová realizácia príkladu v Matlabe P = [0 1 2 3 4 5 6 7 8 9 10];%vstup T = [0 1 2 3 4 3 2 1 2 3 4]; % ziadany vystup net = newff([0 10],[5 1],{'tansig' 'purelin'}) pause Y = sim(net,P) plot(P,T,P,Y,'o') pause net.trainParam.epochs = 200; net = train(net,P,T) pause Y = sim(net,P) plot(P,T,P,Y,'o')
Prvý krok riešenia – náhodne generovanie váh, výstup zo siete Y = 0.8481 -0.0144 -0.4497 -1.5582 -1.8822 -1.8217 -1.7415 -1.7863 -1.9691 -2.0518 -2.2853
Riešenie po 200 epochách, chyba, výstup zo siete Y = 0.0000 1.0000 2.0000 3.0001 3.9586 3.1108 1.8584 1.1467 1.8581 3.1124 3.9585
T = ´ 01 2 3 4 3 2 1 2 3 4 Y = 0.0004 0.9991 1.9999 3.0014 3.9992 3.0000 2.0000 1.0005 1.9981 3.0021 3.9992
Príklad 2 Sušič vlasov (arx0.m) % dryer model % Toto demo je upravene pre potreby vyucby. % Priebezne data su merane z elektricky ohrievaneho systemu (susic vlasov). % Ulohou je urcit matematicky model typu ARX a porovnat ho s NN modelom. % Vystupom je teplota ohriateho vzduchu T a vstupom je velkost napatia U. % Teplota je snimana termoclankom. % Merane udaje su zapisane v subore DRYER2.mat % Vo vektore y2 je ulozena snimana teplota (1000 hodnot),vo vektore u2 su % ulozene merane hodnoty vstupneho napatia (1000 hodnot). % Perioda vzorkovania (snimania je 0.08s) pause load dryer2 % nacitanie vsetkych udajov % Press a key to continue % Pre identifikáciu je použitých prvych 300 udajov: z2 = [y2(1:300) u2(1:300)]; th = arx(z2,[3 2 3]); th = sett(th,0.08);
Príklad 2 (neurf.m) load dryer2 % Urcenie vstupov a referencnych vystupov pre NN MLP modelu nI=5; % Rad vstupu nT=5; % Rad vystupu n=250; % počet vstupnych udajov z 1000 [pom1,pom2]=size(y2); nt=pom1-nT-1; I=zeros(n,nI+nT); for ii=1:1:nI I(:,ii)=u2(ii:n+ii-1,1); end for ii=1:1:nT I(:,ii+nI)=y2(ii:n+ii-1,1); end I=I'; T=y2(nT+1:n+nT,1)';
% Vytvorenie UNS MLP siete net = newff(minmax(I),[5 1],{'tansig''purelin'},'trainlm','learnwh','sse'); net.trainParam.epochs = 80; %net.performFcn = 'sse'; % Suma stvorcov odchyliek %net.trainParam.goal = 0.1; % Sum-squared error goal. net.trainParam.show = 10; % Frek.zobrazov. (in epochs). net.trainParam.mc = 0.95; %lp.mc = 0.2; % Natrenovanie siete net = train(net,I,T); pause; Y = sim(net,I);
ARX model SS1=(yh-y); SS2=SS1.^2; SSE=sum(SS2) SSE = 3.4761 NN MLP model SSE = 1.8979