1 / 7

Clase 2

Clase 2. m. n. 5. a m. a =. a 3. n. 5. 4. a. Radicales. Propiedades. m. n. a m. a =. n. Definición de potencia de exponente fraccionario. (a  0; m, n  Z; n  1 ). n. n. n. a · b = a·b. a · b = (a·b). a : b = (a:b). n. n. n.

irma-cooley
Download Presentation

Clase 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 2 m n 5 am a = a3 n 5 4 a Radicales. Propiedades

  2. m n am a = n Definición de potencia de exponente fraccionario (a  0; m, n  Z; n  1)

  3. n n n a · b = a·b a · b = (a·b) a : b = (a:b) n n n a : b = a:b m n n am a = m 1 1 1 m 1 1 1 1 1 1 n n n n n n n n n m n m m n mn a = a 1 a = a = a a nm km m km an akn = kn = a a Propiedades Potencia Radicales

  4. a) b) n n n n n n p a · b = a ·b a – b = a – b n n p c) d) = a a n n+p p a a = n m n n nr p e) a : b = a :b f) = a apr Si a≥0, b≥0 dí cuáles de las si- guientes relaciones son verda- deras o falsas. Ejercicio V F V F V F

  5. 1. El índice no tiene factores comunes con el exponente del radicando. n n n a · b = a·b n n n a : b = a:b 2. Se han extraído los factores que son raíces exactas. 3. El radicando no tiene denominadores. m km an akn = Un radical está simplificado cuando:

  6. 6 3 √81 6 3 = √9 √125 = √34 = √32 = 5 √5 = √53 1 = = √2 √2 √2 √2 √2 √ 1  1 2 = 2  Ejemplos:

  7. Para el estudio individual Reduce tanto como sea posible los siguientes radicales. 4 3 a) 16 x5y b) 16(m – n)5 c) 8p2(r – s)3

More Related