1 / 27

Blood

Blood. 17. Overview of Blood Circulation. Blood leaves the heart via arteries that branch repeatedly until they become capillaries Oxygen (O 2 ) and nutrients diffuse across capillary walls and enter tissues Carbon dioxide (CO 2 ) and wastes move from tissues into the blood.

irmac
Download Presentation

Blood

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Blood 17

  2. Overview of Blood Circulation • Blood leaves the heart via arteries that branch repeatedly until they become capillaries • Oxygen (O2) and nutrients diffuse across capillary walls and enter tissues • Carbon dioxide (CO2) and wastes move from tissues into the blood

  3. Overview of Blood Circulation • Oxygen-deficient blood leaves the capillaries and flows in veins to the heart • This blood flows to the lungs where it releases CO2 and picks up O2 • The oxygen-rich blood returns to the heart

  4. Composition of Blood • Blood is the body’s only fluid tissue • It is composed of liquid plasma and formed elements • Formed elements include: • Erythrocytes, or red blood cells (RBCs) • Leukocytes, or white blood cells (WBCs) • Platelets • Hematocrit – the percentage of RBCs out of the total blood volume

  5. Components of Whole Blood Plasma(55% of whole blood) Buffy coat:leukocyctes and platelets(<1% of whole blood) Formed elements Erythrocytes(45% of whole blood) Withdraw blood and place in tube Centrifuge 1 2 Figure 17.1

  6. Physical Characteristics and Volume • Blood is a sticky, opaque fluid with a metallic taste • The pH of blood is 7.35–7.45 • Temperature is 38C, slightly higher than “normal” body temperature • Blood accounts for approximately 8% of body weight • Average volume of blood is 5–6 L for males, and 4–5 L for females

  7. Blood Plasma • Blood plasma contains over 100 solutes, including: • Proteins – albumin, globulins, clotting proteins, and others • Nonprotein nitrogenous substances – lactic acid, urea, creatinine • Organic nutrients – glucose, carbohydrates, amino acids • Electrolytes – sodium, potassium, calcium, chloride, bicarbonate • Respiratory gases – oxygen and carbon dioxide

  8. Formed Elements • Erythrocytes, leukocytes, and platelets make up the formed elements • Only WBCs are complete cells • RBCs have no nuclei or organelles, and platelets are just cell fragments • Most formed elements survive in the bloodstream for only a few days • Most blood cells do not divide but are renewed by cells in bone marrow

  9. Erythrocytes (RBCs) • Biconcave discs, anucleate, essentially no organelles • 97 % hemoglobin (Hb), a protein that functions in gas transport • Contain the plasma membrane protein spectrin and other proteins that: • Give erythrocytes their flexibility • Allow them to change shape as necessary

  10. Erythrocytes (RBCs) Figure 17.3

  11. Erythrocyte Function • Erythrocytes are dedicated to respiratory gas transport • Hemoglobin reversibly binds with oxygen and most oxygen in the blood is bound to hemoglobin • Each heme group bears an atom of iron, which can bind to one oxygenmolecule • Each hemoglobin molecule can transport four molecules of oxygen

  12. Production of Erythrocytes • Hematopoiesis – blood cell formation • Hematopoiesis occurs in the red bone marrow of the: • Axial skeleton and girdles • Epiphyses of the humerus and femur • Hemocytoblasts give rise to all formed elements

  13. Production of Erythrocytes: Erythropoiesis • A hemocytoblast is transformed into a committed cell called the proerythroblast • Proerythroblasts develop into early erythroblasts • The developmental pathway consists of three phases • Phase 1 – ribosome synthesis in early erythroblasts • Phase 2 – hemoglobin accumulation in late erythroblasts and normoblasts • Phase 3 – ejection of the nucleus from normoblasts and formation of reticulocytes • Reticulocytes then become mature erythrocytes

  14. Production of Erythrocytes: Erythropoiesis Figure 17.5

  15. Fate and Destruction of Erythrocytes • The life span of an erythrocyte is 100–120 days • Old erythrocytes become rigid and fragile, and their hemoglobin begins to degenerate • Dying erythrocytes are engulfed by macrophages • Heme and globin are separated and the iron is salvaged for reuse

  16. Fate and Destruction of Erythrocytes • Heme is degraded to a yellow pigment called bilirubin • The liver secretes bilirubin into the intestines as bile • The intestines metabolize it into urobilinogen • This degraded pigment leaves the body in feces, in a pigment called stercobilin • Globin is metabolized into amino acids and is released into the circulation • Hb released into the blood is captured by haptoglobin and phgocytized

  17. Leukocytes (WBCs) • Leukocytes, the only blood components that are complete cells: • Are less numerous than RBCs • Make up 1% of the total blood volume • Can leave capillaries via diapedesis • Move through tissue spaces • Leukocytosis – WBC count over 11,000 per cubic millimeter • Normal response to bacterial or viral invasion

  18. Leukocytes

  19. Eosinophils • Eosinophils account for 1–4% of WBCs • Lead the body’s counterattack against parasitic worms • Lessen the severity of allergies by phagocytizing immune complexes

  20. Basophils • Account for 0.5% of WBCs and: • Have large, purplish-black (basophilic) granules that contain histamine • Histamine – inflammatory chemical that acts as a vasodilator and attracts other WBCs (antihistamines counter this effect)

  21. Lymphocytes • Account for 25% or more of WBCs and: • Are found mostly enmeshed in lymphoid tissue (some circulate in the blood) • There are two types of lymphocytes: T cells and B cells • T cells function in the immune response • B cells give rise to plasma cells, which produce antibodies

  22. Monocytes • Monocytes account for 4–8% of leukocytes • They are the largest leukocytes • They leave the circulation, enter tissue, and differentiate into macrophages • Macrophages: • Are highly mobile and actively phagocytic

  23. Platelets • Platelets are fragments of megakaryocytes • Platelets function in the clotting mechanism by forming a temporary plug that helps seal breaks in blood vessels

  24. Genesis of Platelets • The stem cell for platelets is the hemocytoblast • The sequential developmental pathway is hemocytoblast, megakaryoblast, promegakaryocyte, megakaryocyte, and platelets Figure 17.12

  25. Human Blood Groups • RBC membranes have glycoprotein antigens on their external surfaces • These antigens are: • Unique to the individual • Recognized as foreign if transfused into another individual • Promoters of agglutination and are referred to as agglutinogens • Presence or absence of these antigens is used to classify blood groups

  26. ABO Blood Groups • The ABO blood groups consists of: • Two antigens (A and B) on the surface of the RBCs • Two antibodies in the plasma (anti-A and anti-B) • Agglutinogens and their corresponding antibodies cannot be mixed without serious hemolytic reactions

  27. Rh Blood Groups • Presence of the Rh agglutinogens on RBCs is indicated as Rh+ • Anti-Rh antibodies are not spontaneously formed in Rh– individuals • However, if an Rh– individual receives Rh+ blood, anti-Rh antibodies form • A second exposure to Rh+ blood will result in a typical transfusion reaction

More Related