1 / 19

Método Simplex dos fases

Método Simplex dos fases.

Download Presentation

Método Simplex dos fases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Método Simplex dos fases

  2. Una compañía de transporte tiene 3 tipos de camiones, el tipo A tiene de espacio refrigerado y 3 de espacio no refrigerado. B tiene de esp. Refrigerado y 1 de esp. No refrigerado y el C tiene de espacio refrigerado y 5 de espacio no refrigerado. El cliente quiere transportar un producto que necesita de de área refrigerada y el área no refrigerada sea igual a . La compañía calcula entre 1700 litro de combustible para un viaje con el camión A, 750 l para el camión B y C 800 l. ¿Cuántos camiones de cada tipo deben ser usados en el transporte del producto con el menor consumo posible?

  3. PPL: cantidad a ser transp. por camión tipo A cantidad de camión tipo B cantidad de camión tipo C FO: Restricciones: disp. mín. de esp. disp. Esp. no refr. Variables de no negativ.

  4. Resolución: Repare que las restricciones tienen signos de (=) y (), en este caso es necesario realizar transformaciones lineales en estas ecuaciones. En la restricción del tipo () es equilibarda con una variable de exceso, o sea: La segunda restricción ya esta equilibrada. PPL:

  5. No hay una matriz identidad para una solución inicial!!! ¿Por qué? • Repare que en la primera restricción del tipo (=) no hay variable de holgura, pues la restricción dice que debe ser utilizado exactamente 10 de espacio no refrigerado. • En la segunda restricción del tipo la variable auxiliar tiene coeficiente -1.

  6. Paso 1: Variable artificial PPL: Técnica de la variable artificial:

  7. Repare que ya tenemos la matriz identidad que esta siendo formada por las variables artificiales A1 y A2. • La suma original entre y y igual a 10, se mantendrá solo si la variable artificial A2 fuera igual a 0. Lo mismo para A1. • Tenemos que librarnos de A1 y A2, pero ¿cómo conseguir eso? • Necesito que A1=0 y A2=0. • Conozco el método simplex para max y min, entonces vamos comenzar a minimizar la suma A1+A2

  8. Resumiendo: • Organizar una función que sea la suma de las variables artificiales. • Minimice la función utilizando el método Simplex. • Alcanzado el óptimo, o el mínimo de la suma es nulo y esta libre de las variables artificiales; • Caso en que el mínimo de la suma no sea nulo, se concluye que el sistema de ecuaciones no tiene solución. Este es el primer paso del método. Función artificial =suma de las var artificiales.

  9. Min F(A)=A1+A2 • Analizando el cuadro, ¿podemos iniciar el cálculo? • Acertó, quien dijo que NO!! • En el cuadro estamos leyendo F(A)=0, lo que es errado. Esto sucede pq las variables artificiales están en la base, pero no tienen coeficientes nulo enla ecuación de la función. • Es necesario transformar.

  10. La transformación lineal es realizada de la siguiente manera: Sume a las ecuaciones que tienen variables artificiales y así se obtendrá coeficientes nulos para las variables artificiales, que son VB, y el valor de la función será 30.

  11. El cuadro está pronto para el cálculo. Entra en la base x3, pues es el más positivo que estamos a minimizar. Como: 20/5=4 y 10/5=2 Sale A2, el menor cociente. Dividir la fila A2 entre 5: L2/5 L

  12. Solución no óptima, pues hay coeficientes positivos en la ecuación de la función. Entra x2 en la base. Como:10/1=10 2/(1/5)=10 en este caso escogemos aleatoriamente uno de ellos, vamos a escoger A1.

  13. Solución no óptima, pues hay coeficientes positivos en la ecuación de la función. Entra x2 en la base. Como:10/1=10 2/(1/5)=10 en este caso escogemos aleatoriamente uno de ellos, vamos a escoger A1.

  14. Solución óptima. • Min F(A) implica variables artificiales con valor nulo. • La base óptima de la solución del sistema de ec. de la forma padrón. Va ser utilizada para la optimización de la función objetivo. • Ya reparó que en la ecuación final de la función artificial es igual al del cuadro inicial, esto sólo ocurre pq el mínimo de F(A) es 0 y todas las variables artificiales son var NB.

  15. 2do Paso: optimizar la función objetivo • Del PPL tnmos: Min • El 2do paso del método consiste en minimizar esta función, aplicando el método Simplex en la base óptima obtenida al final del primer paso.

  16. ¿El cuadro está pronto?: NO!!! de X2=10 y X3=0, entonces • Pero, en el cuadro se lee F(0)=0, lo que esta errado. Esto ocurre pq las variables x1,x2,x3 están en la base pero no tienen coeficiente nulo en la función. • Es necesario transformar linealmente la ecuación de la función.

  17. Unir los coeficientes a anularse a las coordenadas unitarias de las respectivas VB, coloque a la izquierda de esta VB el simétrico del coeficiente que tiene en F(0). • Multiplique las ecuaciones por los valores situados a la izquierda y sumarlo a la ecuación de la función.

  18. Solución óptima: pues todos los coeficientes son no negativos (min). La solución óptima es única, pues solo las VB tienen coeficiente nulo en la ecuación de la función.

  19. GRACIAS POR LA ATENCIÓN

More Related