1 / 63

Some Irradiation Results from a Chip in UMC018 Technology

Some Irradiation Results from a Chip in UMC018 Technology. Peter Fischer for Christian Kreidl Heidelberg University. Summary. UMC018 Chip was irradiated with X-rays to 7.5Mrad No degradation after annealing Strange effects around 1.2Mrad Work done in the frame of the DEPFET project

ivory
Download Presentation

Some Irradiation Results from a Chip in UMC018 Technology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Some Irradiation Results from a Chipin UMC018 Technology Peter Fischer for Christian Kreidl Heidelberg University P. Fischer, ziti, Heidelberg

  2. Summary • UMC018 Chip was irradiated with X-rays to 7.5Mrad • No degradation after annealing • Strange effects around 1.2Mrad • Work done in the frame of the DEPFET project • Measurements by Christian Kreidl • Chip by Ivan Peric P. Fischer, ziti, Heidelberg

  3. The Chip • DCD1 = DEPFET Current Digitizer • Readout Chip for DEPFET Sensor columns DEPFET Sensor goes here… DCD1 Chip current memory cells to subtract pedestal 8 bit ADCs using current memory cells P. Fischer, ziti, Heidelberg

  4. More Details... Test Injection current Regulated Cascode Sampling Current Subtract 2 ADCs ADC Output Logic Generate ADC + memory cell control signals ADC result calculation, MUX per pixel 3 x 6 lines ADC Steering Signals Serializer Sample Monitoring Pad Clock Divider 600MHz sync for FPGA, Switcher P. Fischer, ziti, Heidelberg

  5. Chip Layout & Design • UMC 0.18µm technology, 2 x MiniASIC size • ADC in radhard layout (enclosed NMOS, guard rings) • Digital part without any precautions • 72 inputs P. Fischer, ziti, Heidelberg

  6. Pixel Layout Size x: 180µm Size y: 110µm regulated cascode two 8 bit algorithmic current mode ADCs working interleaved digital stuff (conservative layout) bump pad with 60µm opening test injection P. Fischer, ziti, Heidelberg

  7. Chip Test Setup • Chip glued & bonded to PCB – no cover • Readout via USB P. Fischer, ziti, Heidelberg

  8. Irradiation Facility in Karlsruhe • 60 keV X-Ray tube at Institut für Nuclear Physics, Karlsruhe • 100-250 krad/h (depending on distance), calibrated setup • Thanks to Dr. Simonis, Mr. Dierlamm and Mr. Ritter for help! P. Fischer, ziti, Heidelberg

  9. Irradiation • Dose: • 31h @99.5 krad/h (d=180mm) = 3.1 Mrad • 18h @241 krad/h (d=100mm) = 4.4 Mrad • Total = 7.5 Mrad • DCD Operation Mode • clock running permanently • control registers loaded every 30s with default values(precaution against SEU) • Measurements (while tube is on!): • current consumption on VDD (= analog + digital) • on selected pixels:- Current memory cell operating range- ADC characteristics- Test injection current value P. Fischer, ziti, Heidelberg

  10. Current consumption • Total supply current (analog + digital) • Current rises until 1.2Mrad, then settles to pre-rad value 1.2Mrad = pre-rad Probably bit flip In Bias DACs P. Fischer, ziti, Heidelberg

  11. Current Memory Cells • Cell keeps input voltage constant within ± 10µA P. Fischer, ziti, Heidelberg

  12. ADC Characteristic (ADC value vs. Injection DAC) • Test current injected via ON-CHIP injection DAC • SEUs during measurement (more at 1.2Mrad !) • most effects @<1.2Mrad, some ADCs BROKEN • after 7Mrad and 6 days annealing: back to pre-rad behavior Pixel 59 Pixel 71 BROKEN @ 1.2Mrad 0 Mrad = after anneal. 7 Mrad Many SEUs P. Fischer, ziti, Heidelberg

  13. Test Injection Current vs. DAC value • Test injection current is ok (not dead). Some variation. P. Fischer, ziti, Heidelberg

  14. ADC Histograms • Plot deviation from straight line • 45nA (@0)  70nA (@1.2-7 Mrad)  44nA (7 day anneal) P. Fischer, ziti, Heidelberg

  15. ADC noise map • All ADCs back to initial values after anneal Readout problems due to setup Readout problems due to setup P. Fischer, ziti, Heidelberg

  16. Summary • No degradation after 7Mrad of 60keV X-rays • Strange effects at 1.2 Mrad (power higher, ADC dead) P. Fischer, ziti, Heidelberg

  17. Thank you! P. Fischer, ziti, Heidelberg

  18. Bump Bonding Status in HD Peter Fischer, ziti, Uni Heidelberg for Christian Kreidl P. Fischer, ziti, Heidelberg

  19. Reminder • We do gold stud bumping: • Create a gold sphere on bonder • Place ball on chip, Thermocompress, rip off wire • Place all bumps • Flip & press & heat (~50g / bump) • Can put bumps on both sides to reduce forces • Can put isotropic glue with conducting particles • Key parameters: • Diameter of balls ~ 45µm • Min. bond pad size ~ 60µm • Min pitch ~ 100µm • Advantages: • single chip (prototype) process, in house, cheap • Drawbacks: • sequential, limited # of pads, large force, possible destruction of electronics under pad, need hard substrate, no rework P. Fischer, ziti, Heidelberg

  20. Tests with Dummy Chips • Aluminum on Silicon structures • Substrate and ‘chip’ • Trace pattern to check contact & shorts SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

  21. Chip with Bumps P. Fischer, ziti, Heidelberg

  22. Flipped Assemblies • 80g/bump: all bumps connected, no shorts • 20g/bump: 4 of 6 snakes connected, chip fell off SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

  23. Large Size Module • Mechanical demonstrator of ILC vertex detector module • no electrical tests • check how to handle a large silicon device • check how low pitch flipping works • 16 DCD (dummy) chips • 36 Switcher (dummy) chips • 11,9 cm x 1,6 cm • No electrical test possibilities 8 ‘DCD’ chips 8 ‘DCD’ chips 2 x 18 ‘Switcher’ chips P. Fischer, ziti, Heidelberg

  24. Placing Chips Close to Each Other (side view) • Switcher (dummy) chips • 164 bumps each1 • ,4mm x 5,8mm • 60g/bump = 9,8kg/chip Edge of flip tool SuS@Uni-Heidelberg SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

  25. ILC Mechanical Sample SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

  26. Minimum gap 50µm gap 50µm gap SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

  27. Module End • 224 bumps/chip, 1.35mm x 4.95mm, 13.4kg/chip 200µm gap SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

  28. Full sample • One module populated with 52 chips • No failures ! SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

  29. Effort • Bonding process: cleaning, mounting, aligning, bumping • Switcher: 11min • DCD: 13min • Flipping process: pickup, aligning, thermocompression • 9 min • 2 days of work including learning • Improvements: • build better mounting device for single chip bumping (mechanical clamp) P. Fischer, ziti, Heidelberg

  30. Thank you! P. Fischer, ziti, Heidelberg

  31. ADC Design in Heidelberg Peter Fischer, ziti, Uni Heidelberg ADC Design: Ivan Peric P. Fischer, ziti, Heidelberg

  32. Content • Algorithmic / Pipeline ADC principles • Voltage vs. Current Mode • ADC in DEPFET readout chip • Reminder: ADC of David Muthers (Kaiserslautern) • Comparison of figures of Merit P. Fischer, ziti, Heidelberg

  33. Algorithmic (Cyclic) ADC • Idea: • Compare signal to half scale  generate BIT • If BIT = 1: subtract half scale • Multiply result by two • Restart over again • Every cycle produces a new bit • Very popular architecture • Resolution limited by precision of Compare / Subtract / Multiply • Comparator requirements are relaxed by two threshold per stage (and some error correction) P. Fischer, ziti, Heidelberg

  34. ADC Stage ADC DAC + + - k Bit P. Fischer, ziti, Heidelberg

  35. Pipeline ADC 2 2 2 2 • Shift value through many stages • Can process one new value per cycle • More hardware • Faster • Can scale cells for lower precision in later cells Stage 1 Stage 2 Stage m-1 Stage m Vin Bit Alignment + RSD Correction P. Fischer, ziti, Heidelberg

  36. Voltage vs. Current • Signal can be voltage or current • Voltage: • Often natural quantity delivered by circuit • Comparison simple • Add / Subtract & duplication with switched capacitor circuits • Large swings • Needs linear capacitors • Current • May require U->I conversion • Low swing operation • Add / Subtract very simple • Duplication with multiple current copy & add • Can do with simple, small capacitors • No obvious winner P. Fischer, ziti, Heidelberg

  37. Standard Current Memory Cell • Tracking phase: Diode connected transistor • Sample on gate capacitance • Drawbacks: • Charge injection is signal dependent • Low output resistance & current dependent • Input potential current dependent • Large storage cap (low leak) decreases speed Iin / Iout P. Fischer, ziti, Heidelberg

  38. Pixel Layout Two 8 Bit ADCs: Current memory cells, Comparators, Reference sources. Optimized, rad hard layout ADC timing signals (can be shared) 110µm 2 x Output Logic(shift registers…) Very conservative layout Using standard cells P. Fischer, ziti, Heidelberg

  39. ADC Characteristic • 8 Bit ADC output vs. injection DAC value P. Fischer, ziti, Heidelberg

  40. ADC Noise / INL • Plot deviation from ideal value for various inputs • Width mostly from noise in input stage P. Fischer, ziti, Heidelberg

  41. Pipeline ADC (Design Study) P. Fischer, ziti, Heidelberg

  42. Comparison: ADC from D. Muthers, Kaiserslautern • Voltage mode • Cyclic & Pipeline version • Early version used in TRAP chip P. Fischer, ziti, Heidelberg

  43. Comparison • FoM = P / 2ENoB / f * 1012 (small is good) • ADC from HD are VERY small P. Fischer, ziti, Heidelberg

  44. Thank you! P. Fischer, ziti, Heidelberg

  45. Simple Serial Data Driver Peter Fischer, ziti, Uni Heidelberg P. Fischer, ziti, Heidelberg

  46. Goal • Study a serial driver suited to directly drive an FPGA • Find out how • Complex • Large • Power hungry it is. • Later: study copper transmission: • how long can we go ? • How fast can we go ? • For which type of cable ? • for which power requirement ? P. Fischer, ziti, Heidelberg

  47. Design choices • Use (free) Aurora protocol from Xilinx • No back channel • No channel bonding • Minimize protocol engine • Use radiation hard library for a test P. Fischer, ziti, Heidelberg

  48. Aurora – Protocol • Physical layer interface – electrical levels, clock encoding, symbol coding • Channel initialization and error handling • Link layer: • Beginning / End of data • IDLE • Clock compensation • 8B/10B encoding • Arbitrary data format, Data packets with arbitrary length • 4 Phases: • Initialization • Synchronization of receiver clock (send some syncs) • Data transmission • Idle • Must inject clock compensation characters from time to time P. Fischer, ziti, Heidelberg

  49. FIFO: (data buffer) Control FSM 8b/10b Encoder Serializer LVDS-Driver Components P. Fischer, ziti, Heidelberg

  50. Initialisation RESET TXRES_0 ln_cnt < N+2 TXRES_1 zur Validierung res_cnt < 3 P. Fischer, ziti, Heidelberg

More Related