350 likes | 527 Views
Basis of Supramolecular Chemistry and Crystal Engineering. 1.1 Introduction Yesterday, Today and Tomorrow 1.2 Intermolecular F orces 1.3 Basic C oncepts of Supramolecular Chemistry 1. 4 Hydrogen-bonding in Crystal Engineering 1. 5 Crystal Engineering of Coordination Polymers.
E N D
Basis of Supramolecular Chemistry and Crystal Engineering 1.1 Introduction Yesterday, Today and Tomorrow 1.2 Intermolecular Forces 1.3 Basic Concepts of Supramolecular Chemistry 1.4 Hydrogen-bonding in Crystal Engineering 1.5Crystal Engineering of Coordination Polymers
1.5Crystal Engineering of Coordination Polymers • Important basis of coordination polymers and supramolecules • 0-D Supramolecules • Structural control & supramolecular isomerism in low-dimensions • 1D-3D coordination polymers 微孔配位聚合物
三维结构:微孔配位聚合物 Frameworks骨架 Inorganic Zeolites
O.M. Yaghi, Science, 2002, 295, 469 Systematic Design of Pore Size and Functionality in Cubic-like MOFs and Their Application in Methane Storage X-ray structures of the MOFs. Zn (blue polyhedra), O (red spheres), C (black spheres). The large yellow spheres: the cavities
desolvation decomposition Thermalstable:up to 400 oC Largecapacity:800-1500 mg/g
Zeolitic Metal-Organic Frameworks M 四面体节点 = 1 : 各种沸石网 Zeolite nets 2 = 135-145 In zeolites
[Zn(mim)2]nxsolvent-SOD Zeolite (沸石)咪唑基阴离子及二价d10金属组装的超分子体系 Feature: Small windows Large cavity Topologic net solvent accessible area 47.0%
[Zn(eim)2]nxsolvent-RHO Zeolite void = 55.4%
吸附性能 Isotherm for N2 adsorption at 77 K (a) and MeOH vapor adsorption at 298 K (b) [Zn(mim)2]n-沸石SOD Angew. Chem. Int. Ed. 2006,45, 1557
Thermal Stability [Zn(mim)2]n- ZeoliteSOD [Zn(eim)2]n- ZeoliteANA TGA:>450 C TGA:>400 C Thermogravimetric Analysis
AgCl + Hatz {[Ag6Cl(atz)4]∙(OH)∙6H2O}∞ (8) NH3∙H2O AgCl + Ag2O + Hatz 3-connected 4.142 net or 4-connected diamond net
Ag+ Cl¯ Ag···Cl 3.060 Å 8.5 Å 5-fold interpenetration Void: 32.7% Tetragonal I @ 293K (8)
{[Ag6Cl(atz)4]∙(OH)∙6H2O}∞ (8) dehydrate -4H2O {[Ag6Cl(atz)4]∙(OH)∙2H2O}∞ (8’)
Ag···Cl 3.053, 3.070 Å 4.3 10.4Å Tetragonal P @ 293K (8’) 6-fold interpenetration Void: 25.2%
Reversible structural changes H2O + H2O Dehydrated: 4.3 10.4Å Hydrated: 7.8 9.2Å Dynamic or Smart Porous Material JACS, 2005, 14162
One-pot synthesis of triazoles: Cycloaddition of Nitriles & NH3 under hydro(solvo)thermal condition Traditional synthetic methods: multi-step, hydrazine derivative based Angew. Chem. Int. Ed.2004, 43, 206
? 4-connected nets based solely on square-planar nodes [Cu(tz)] [Cu(mtz)][Cu(ptz)]
[Cu6(etz)6]·guest (12): 新颖、类沸石结构 可开关的窗口 结构单元 金属-有机分子筛 热稳定 > 300oC JACS 2005, 127, 5495 JACS 2008, 130, 6010
[Cu(etz)] (MAF-2):A porous material with exceptional flexibilities and sorption properties Flexible ethyl groups d ~1.5 Å d < 3.6 Å > 300oC JACS2005, 127, 5495
异常的温度依赖吸附行为 Traditional Dynamic 证实客体吸附之后,骨架结构没有明显变化 吸附的动态过程起源于动力学控制柔性
Multimode Guest-triggered Structural Transformations ─ P1, V = 1603 Å3 +N2 ─ R3, V = 1580Å3 ─ ─ R3, V = 1561 Å3 ─ R3, V = 1591 Å3 R3, V = 1606 Å3 ─ D ~0.1%-1.3% Im3, V = 1660 Å3
优异的分子分离性能 可分离:有机分子/水分子 可分离:苯/环己烷 窗口开关功能、不吸水 窗口变型功能
A Dynamic Porous Magnet: [KCo7(OH)3(ip)6(H2O)4] (ip =1,3-phenyl-dicarboxylate) Assembling magnetic anisotropic high-spin clusters into 3D porous network Multifunctional Material
Co3: 6-coordinate to 4-coordinate N2 Sorption Structural Change: single-crystal to single-crystal Transformation
Guest-induced modulation effect of magnetic properties 1 1’ frequency dependence of the ac susceptibility Hysteresis curves & the temperature-dependent susceptibility Incorporating magnetic properties into porous structure!
次级构筑单元(Secondary Building Units, SBUs) 几何构型 四边形 八面体 三棱柱 连接数4 6 6
三维网络的构筑 MOF-500 MIL-100 & MIL-101 MOF-235 MOF-236 O. M. Yaghi, Angew. Chem. Int. Ed.2006, 45, 2528; Inorg. Chem.2005, 44, 2998-3000. G. Férey, et al. Acc. Chem. Res., 2005, 38, 217
超分子三四面体(Supermolecular Triakis Tetrahedron) void 21.2% d9.3 Å 8.6 Å
三维孔道 d12.4 Å; void 47.3% Total void: 68.5%
Dynamic Porous Materials? Smart Materials ?
微孔配位聚合物:小结 不同或优于无机微孔材料 • 具有一定的可设计性,可能获得具有不同孔洞大小、形状的微孔结构 孔径:0.3-2 nm,形状:直筒、笼状等 • 具有柔性,可能实现“灵巧化”(smart) • 可以具有有机的孔表面:表面性质可调节(修饰),分子识别功能可调节 • 质量轻 • 可能具有多功能 • 稳定性能良好