1 / 13

Multi electron atoms

Multi electron atoms. Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction, there is the repulsive electron-electron interaction.

Download Presentation

Multi electron atoms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multi electron atoms • Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction, there is the repulsive electron-electron interaction. • Calculations show that allowed electron energies are no longer solely determined by the single quantum number, n. • Several distinct electron states (orbits) exist, all with the same n, forming a `shell' of states. • In general, these states have different energies. • The number of different orbital states in a shell of a given n is n2.

  2. Multi electron atoms • The electrons interact not only with the nucleus but also among themselves. It is difficult to get the wave function. • Electron configuration: How do the electrons fill the shells and subshells? How to get its ground state? • In the ground states of atoms, electrons occupy the lowest energy states available consistent with the exclusion principle.

  3. The Pauli exclusion principle • The Pauli exclusion principle states that only one electron can be in a given state, which is labeled by four quantum numbers (n,l,ml,ms): • n, Principal quantum number, the energy level • l, Orbital quantum number, orbital angular momentum, • ml (Orbital) magnetic quantum number, • ms Spin (magnetic) quantum number,

  4. Hund’s rule • Greatest stability results if the atomic orbitals (AO) in a degenerate set are half-filled with electrons before any of them are filled

  5. Aufbau principle • a maximum of two electrons are put into orbitals in the order of increasing orbital energy: the lowest-energy orbitals are filled before electrons are placed in higher-energy orbitals. • Orbitals are filled in the order of increasing n+l; • Where two orbitals have the same value of n+l, they are filled in order of increasing n. • This gives the following order for filling the orbitals: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, and 7p

  6. Each shell is identified by a letter according to its n value: The innermost shell (n = 1) is called the K-shell, the next innermost shell (n = 2) is called the L-shell, etc. • No two electrons can occupy precisely the same state.

  7. Molecular Orbitals MO → LCAO s orbital s + s s - s pz orbital pz - pz pz + pz px orbital py orbital px(y) - px(y) px(y) + px(y)

  8. Energy diagram su* pg* 2pz 2pz Dissociation energy eV: sg 2px 2py 2py 2px pu su* 2s 2s sg su* 1s 1s sg

  9. Säkulargleichung sg[1s] sg[2s] sg[2P] su[1s] su[2s] sU[2p] pg[2px] pg[2py] pu[2px] pu[2py] sg[1s] sg[2s] sg[2P] su[1s] su[2s] sU[2p] pg[2px] pg[2py] pu[2px] pu[2py] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  10. Hybridisierung • Eine Verschmelzung unterschiedlicher Strukturen bezeichnet man als Hybridisierung. Es entsteht ein Hybrid. • In der Chemie verschmelzen verschiedene Elektronenorbitale (s, p, d) zu neuen Hybridorbitalen. • Hybridisierung tritt nur bei Atomen auf, die kovalente Bindungen zu anderen Atomen aufweisen. • Hybridisierung erzeugt energetisch stabile zumeist dreidimensionale geometrische Strukturen. • Nur Valenzorbitale (äußerste Schale, auch wenn im Grundzustand nicht besetzt) eines Atoms können an der Hybridisierung teilnehmen. • Hybridorbitale erzeugen stets s-Bindungen. p-Bindungen - "Doppelbindungen" - entstehen aus nicht hybridisierten p-Orbitalen

  11. Hybridisierung s – Orbital + p – Orbital sp-Hybridorbitale s – Orbital + 2p – Orbitale sp2 -Hybridorbitale s – Orbital + 3p – Orbitale sp3 Hybridorbitale

More Related