540 likes | 642 Views
Review for Final Exam. LC3 – Controller FPGAs Multipliers Debounce Circuit Basic Operation of N and P Type FETs Logic Gates Built from FETs. F. F. F. F. F. F. Input Forming Logic. Output Forming Logic. Current State. LC-3 Datapath. F. F. F. F. F. F. Current State.
E N D
Review for Final Exam LC3 – Controller FPGAs Multipliers Debounce Circuit Basic Operation of N and P Type FETs Logic Gates Built from FETs
F F F F F F Input Forming Logic Output Forming Logic Current State LC-3 Datapath
F F F F F F Current State Datapath Control IFL OFL LC-3 Datapath Next State Datapath Status
B A Instruction Fetch 1. Copy PC contents to MAR enaPC = 1 & ldMAR= 1 ldMAR enaPC ldPC PC 2. Perform memory read selMDR=1 & ldMDR=1 selPC Increment PC selPC = 00 & ldPC = 1 3. Copy memory output register contents to IR enaMDR = 1 & ldIR = 1 selMDR ALU ldIR IR ldMDR enaMDR
The Control Logic aluControl nzpMatch enaMARM memWE selEAB1 selEAB2 selMAR selMDR enaMDR enaALU ldMDR ldMAR regWE selPC enaPC ldPC SR1 SR2 ldIR DR Flip Flops OFL IFL Z IR N P
The Fetch Cycle Fetch0 enaPC ldMAR • PC MAR • PC PC+1, Mem[MAR] MDR • MDR IR selPC <= “00” ldPC selMDR <= ‘1’ ldMDR Fetch1 Fetch2 enaMDR ldIR
A Note on Timing • In all cases: • Buses are driven and muxes are selected during a state • Registers and memory inputs are latched on the rising clock edge at the end of the state
Fetch 0 master loads during the last state of the previous instruction Fetch 0 Fetch 1 Fetch 2 F0 master loads
The contents of the PC are loaded into MAR Fetch 0 Fetch 1 Fetch 2 PC contents are driven onto the Bus
The contents of the PC are loaded into MAR Fetch 0 Fetch 1 Fetch 2 MAR and F1 masters load
Fetch Instruction into MDR / Increment PC Fetch 0 Fetch 1 Fetch 2 Data is fetched from memory / PC is incremented
Fetch Instruction into MDR / Increment PC Fetch 0 Fetch 1 Fetch 2 MDR, PC and F2 masters load
Load the instruction into the IR Fetch 0 Fetch 1 Fetch 2 MDR contents are driven onto the Bus
Load the instruction into the IR Fetch 0 Fetch 1 Fetch 2 IR master loads
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 The LEA Instruction • R[DR] PC + IR[8:0] • Note that the PC Offset is always a 2’s complement (signed) value DR LEA 1110 PCoffset9 selEAB1 <= ‘0’ selEAB2 <= “10” selMAR <= ‘0’ enaMARM DR <= IR[11:9] regWE LEA0 to Fetch0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 The LDR Instruction SR1 <= IR[8:6] selEAB1 <= ‘1’ selEAB2 <= “01” selMAR <= ‘0’ enaMARM ldMAR LDR0 • MAR R[BaseR]+offset6 • MDR Mem[MAR] • R[DR] MDR LDR DR BaseR 0110 offset6 LDR1 selMDR <= ‘1’ ldMDR LDR2 enaMDR DR <= IR[11:9] regWE to Fetch0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 selEAB1 <= ‘0’ selEAB2 <= “10” selMAR <= ‘0’ enaMARM ldMAR The LDI Instruction LDI0 • MAR PC + IR[8:0] • MDR Mem[MAR] • MAR MDR • MDR Mem[MAR] • R[DR] MDR LDI1 LDI DR 1010 PCoffset9 selMDR <= ‘1’ ldMDR LDI2 enaMDR ldMAR LDI3 selMDR <= ‘1’ ldMDR enaMDR DR <= IR[11:9] regWE LDI4 to Fetch0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 The STR Instruction SR1 <= IR[8:6] selEAB1 <= ‘1’ selEAB2 <= “01” selMAR <= ‘0’ enaMARM ldMAR STR0 • MAR R[BaseR]+offset • MDR R[SR] • Write memory STR SR 0111 BaseR offset6 SR1 <= IR[11:9] aluControl <= PASS enaALU selMDR <= ‘0’ ldMDR STR1 STR2 memWE to Fetch0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 selEAB1 <= ‘0’ selEAB2 <= “10” selMAR <= ‘0’ enaMARM ldMAR The STI Instruction STI0 • MAR PC + IR[8:0] • MDR M[MAR] • MAR MDR • MDR R[SR] • Write memory STI1 STI SR selMDR <= ‘1’ ldMDR 1011 PCoffset9 STI2 enaMDR ldMAR SR1 <= IR[11:9] aluControl <= PASS enaALU selMDR <= ‘0’ ldMDR STI3 STI4 memWE to Fetch0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 The JSRR Instruction • Note: Same opcode as JSR! (determined by IR bit 11) • R7 PC • PC R[BaseR] JSRR BaseR 0100 0 00 000000 JSRR0 enaPC DR <= “111”, regWE SR1 <= IR[8:6] selEAB1 <= ‘1’ selEAB2 <= “00” selPC <= “01”ldPC JSRR1 to Fetch0
8 x 1ROM (LUT) Using ROM as Combinational Logic B C F A C schem1 A B C F lut1 tt1
LUT(B+C) LUTA’f1 + Af2 Mapping Larger Functions To ROMs LUT(CD) B C D f1 f2 F B C D A Very similar to how we decomposed functions to implement with MUX blocks…
Mapping a Gate Network to 3LUTs 3LUT #2 3LUT #1 3LUT #3
Mapping Same Network to 4LUTs 4LUT #2 4LUT #1
FPGAs – What Are They? Programmable logic elements(LEs) Programmable wiring areas I/O Buffers I/O Buffers I/O Buffers I/O Buffers communicatebetween FPGA andthe outside world I/O Buffers An FPGA is a Programmable Logic Device (PLD)It can be programmed to perform any function desired.
Logic Elements An FPGA Architecture (Island Style) Column Wires Row wires Each LE is configured to do a function Wire intersections are programmed to either connect or not
Programmable Interconnect Junction Column wire ON Connected =1 Row wire Unconnected OFF =0
Example Problem • Generate the N, Z, P status flags for a microprocessor Z’ Z N P D5 D0-D5 N’
Example Problem • Generate the N, Z, P status flags for a microprocessor Z’ Z N P D5 D0-D5 N’ Can be done with wiring only or with 1 4LUT Will require 2 4LUTs Will require 1 4LUT
N 1 2 3 4 5 D0 D1 6 7 8 9 10 P D2 11 12 13 14 15 D3 D4 D5 LUT #1: F1 = D0’• D1’• D2’• D3’ LUT #7: F2 = F1•D4’•D5’ Z output LUT #8: F3 = D5 N output LUT #9: F4 = Z’ • N’ P output Z
Configuring an FPGA • An FPGA contains a configuration pin • Configuration bits are shifted into FPGA using this pin, one bit per cycle • Configuration bits in FPGA linked into a long shift register (SIPO) • Examples on following slides conceptual • Commercial devices slightly different
Structure of a 3LUT b0 b1 b2 ConfigurationStorage Bits (Flip Flops) b3 LUT Output b4 b5 b6 It’s just an 8:1 MUX LUT inputs select which configbit is sent to LUT output Programming LUT function setting configuration bits b7 3 LUT Inputs
D Q D Q 0 1 0 1 b6 CONFIG CLK How are the Configuration Bit Flip Flops Loaded? A serial-in/parallel-out(SIPO) shift register These are the configuration bitswhich the LUT selects from … b7 CONFIG CLK …
Configuring the Programmable Interconnect Column wire Configurationbit b Arranged in a SIPOshift register also Row wire
Binary Shift/Add Multiplication Add Multiplicand Result Shift Register 0 1 0 1 0 0 0 0 - - - - ‘0000’ 1 0 1 Shift Register 0000 0 0 1 1 0101 Multiplier Full Adder 0101
Binary Shift/Add Multiplication Load 0101 Multiplicand Result Shift Register 0 1 0 1 0 1 0 1 - - - - ‘0000’ 0 1 Shift Register 0 0 1 1 Multiplier Full Adder 0101
Binary Shift/Add Multiplication Shift Multiplicand Result Shift Register 0 1 0 1 0 0 1 0 1 - - - ‘0000’ 0 1 Shift Register - 0 0 1 Multiplier Full Adder
Binary Shift/Add Multiplication Add Multiplicand Result Shift Register 0 1 0 1 0 0 1 0 1 - - - ‘0000’ 1 0 1 Shift Register 0010 - 0 0 1 0101 Multiplier Full Adder 0111
Binary Shift/Add Multiplication Load 0111 Multiplicand Result Shift Register 0 1 0 1 0 1 1 1 1 - - - ‘0000’ 0 1 Shift Register - 0 0 1 Multiplier Full Adder 0111
Binary Shift/Add Multiplication Shift Multiplicand Result Shift Register 0 1 0 1 0 0 1 1 1 1 - - ‘0000’ 0 1 Shift Register - - 0 0 Multiplier Full Adder
Binary Shift/Add Multiplication Add Multiplicand Result Shift Register 0 1 0 1 0 0 1 1 1 1 - - ‘0000’ 0 0 1 Shift Register 0011 - - 0 0 0000 Multiplier Full Adder 0011
Binary Shift/Add Multiplication Load 0011 Multiplicand Result Shift Register 0 1 0 1 0 0 1 1 1 1 - - ‘0000’ 0 1 Shift Register - - 0 0 Multiplier Full Adder 0011
Binary Shift/Add Multiplication Shift Multiplicand Result Shift Register 0 1 0 1 0 0 0 1 1 1 1 - ‘0000’ 0 1 Shift Register - - - 0 Multiplier Full Adder
Binary Shift/Add Multiplication Add Multiplicand Result Shift Register 0 1 0 1 0 0 0 1 1 1 1 - ‘0000’ 0 0 1 Shift Register 0001 - - - 0 0000 Multiplier Full Adder 0001
Binary Shift/Add Multiplication Load 0001 Multiplicand Result Shift Register 0 1 0 1 0 0 0 1 1 1 1 - ‘0000’ 0 1 Shift Register - - - 0 Multiplier Full Adder 0001
Binary Shift/Add Multiplication Shift Multiplicand Result Shift Register 0 1 0 1 0 0 0 0 1 1 1 1 ‘0000’ 0 1 Shift Register - - - - Multiplier Full Adder