1 / 48

Olivier Geoffroy

LES modeling of precipitation in Boundary Layer Clouds and parameterisation for General Circulation Model. CNRM/GMEI/MNPCA. Olivier Geoffroy. Jean-Louis Brenguier, Frédéric Burnet, Irina Sandu, Odile Thouron. Parameterisations in GCM = CRM bulk parameterisation. Ex :. AUTO.

jadet
Download Presentation

Olivier Geoffroy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LES modeling of precipitation in Boundary Layer Clouds and parameterisation for General Circulation Model CNRM/GMEI/MNPCA Olivier Geoffroy Jean-Louis Brenguier, Frédéric Burnet, Irina Sandu, Odile Thouron

  2. Parameterisations in GCM = CRM bulk parameterisation. Ex : AUTO - Formation of precipitation = non linear process : Nc=cste LWC Underestimation of precipitation in GCM Biais correctedby tuning coefficientsagainst observations • Problem • nophysically based parameterisations, numerical instability due to step function • Are such parameterisations, with tuned coefficients, still valid to study the AIE? The problem of modeling precipitation formation in GCM • Variables in GCM =mean valuesover a large area in GCM. A parameterisation of the precipitation flux averaged over an ensemble of cells is more relevant for the GCM resolution scale

  3. Which variables drive Rbase at the cloud system scale ? H (m) or LWP (kg m-2) N (m-3) Adiabatic model : LWP = ½CwH2 Rbase(kg m-2 s-1 or mm d-1) Pawlowska & Brenguier (2003, ACE-2): Comstock & al. (2004, EPIC) : Van Zanten & al. (2005, DYCOMS-II) : Super bulk parameterisation Pawlowska & Brenguier, 2003 : At the scale of an ensemble of cloud cells : quasi stationnary state Is it feasible to express the mean precipitation flux at cloud baseRbase as a function of macrophysical variables that characterise the cloud layer as a whole ? In GCMs, H, LWP and N can be predicted at the scale of the cloud system

  4. Objectives & Methodology Objectives : - To establish the relationship between Rbase, LWP and Nact, and empirically determine the coefficients. Methodology: 3D LES simulations of BLSC fields with variousLWP, Nactand corresponding Rbase values Suppose power law relationship Regression analysis a = ? α= ? β = ?

  5. Outline • Presentation of the LES microphysical scheme Particular focus on cloud droplet sedimentation parameterisation • Validation of the microphysical scheme Simulation of 2 cases of ACE-2 campaign and GCSS Boundary layer working group intercomparaison exercise • Come back to the problematic : Results of the parameterisation of precipitation in BLSC

  6. LES microphysical scheme • Modified version of the Khairoutdinov & Kogan (2000)LES bulk microphysical scheme (available in next version of MESONH). • Specificities : • 2 moments • low precipitating clouds : local qc < 1,1 g kg-1 • - coefficients tuned using an explicit microphysical model as data source -> using realistic distributions. • valid only for CRM. microphysical Processes and variables Evaporation : K&K (2000) Air : qv (kg/kg) θ (K) Autoconversion : K&K (2000) Cloud : qc(kg/kg) Nc (m-3) Drizzle : qr(kg/kg) Nr(m-3) Condensation & Evaporation : Langlois (1973) Accretion : K&K (2000) Air: Aerosols : C (m-3), k, µ, ß (= constant parameters) W (m s-1) θ (K) Na(m-3) Activation : Cohard and al (1998) Sedimentation of cloud droplets : Stokes law + generalized gamma law Sedimentation of drizzle drops : K&K (2000)

  7. Which distribution to select? With which parameter ? Generalized gamma : Lognormal : (H) : Stokes regime: • Methodology. • By comparing with ACE-2 measured droplet spectra (resolution = 100 m), • find the idealized distribution which best represents the : • - diameter of the 2nd moment , • diameter of the 5th moment , • effective diameter . Parameterisation of cloud droplets sedimentation

  8. E(d5) (%) E(d2) (%) Results for gamma law, α=3, υ=2 d2 d5 100 % Color = number of spectra in each pixel in % of nb_max 50 % 0 % E(deff) (%) E(deff) (%) deff only spectra at cloud top deff • - Generalized gamma law: best results for α=3, υ=2 • Lognormal law, similar results with σg=1,2-1,3 • ~ DYCOMS-II results • (Van Zanten personnal communication).

  9. E(d5) (%) E(d2) (%) Results for lognormal law, σg=1.5 d2 d5 100 % Color = number of spectra in each pixel in % of nb_max 50 % 0 % E(deff) (%) E(deff) (%) only spectra at cloud top deff deff Lognormal law, with σg=1.5,overestimate sedimentation flux of cloud droplets.

  10. Scheme validation

  11. GCSS intercomparison exercise Case coordinator : A. Ackermann (2005) • Case studied : DYCOMS-II RF02 experiment (Stevens et al., 2003) • Domain : 6.4 km × 6.4 km × 1.5 km • horizontal resolution : 50 m, • vertical resolution : 5 m near the surface and the initial inversion at 795 m. • fixed cloud droplet concentration : Nc = 55 cm-3 • 2 simulations : • - 1 without cloud droplet sedimentation. • - 1 with cloud droplet sedimentation : lognormale law with σg = 1.5 • 2 Microphysical schemes tested : - KK00 scheme, • - MESONH 2 moment scheme • = Berry and Reinhardt scheme (1974). 4 simulations : KK00, no sed / sed BR74, no sed / sed

  12. 6H 6H 6H 3H 3H 3H Median value of the ensemble of models observation Results, LWP, precipitation flux LWP (g m-2) = f(t) KK00, sed BR74, sed Central half of the simulation ensemble KK00, no sed • LWP too low Ensemble range BR74, no sed 6H 3H Rsurface (mm d-1) = f(t) • KK00 : underestimation of precipitation flux • by a factor 10 at surface • - BR74 : good agreement at surface ~0.35 mm d-1 6H 3H Rbase (mm d-1) = f(t) • KK00 : underestimation of precipitation flux by only a factor 2 at cloud base • BR74 : underestimation at cloud base by a factor 2, Rsurface = Rbase no evaporation NO DATA ~1.29 mm d-1

  13. KK00 & measurements drizzle cloud drizzle cloud BR74 50 µm d 84 µm d Results, What about microphysics ? Ndrizzle (l-1) dvdrizzle (µm) hsurf (m) hsurf (m) CT CT BR74 BR74 KK00 KK00 CB CB Averaged profils of Ndrizzle, dvdrizzle in each 30 m layer after 3 hours of simulation and averaged value of measured Ndrizzle, dmeandrizzle (resolution : 12 km) at cloud base and at cloud top (Van Zanten personnal communication) • - KK00 scheme reproduce with good agreement microphysical variables at cloud top and cloud base • BR74 scheme : too few and too large drops.

  14. Simulation of 2 ACE-II cases

  15. In situ measurements : Fast-FSSP 256 bins OAP-200X : 14 bins 35 µm 3,5 µm 315 µm 20 µm <0,25 µm Simulations : drizzle cloud drizzle cloud KK00 BR74 50 µm d 84 µm d Simulation of 2 ACE-II cases Objective : comparison of mean profiles of qr , Nr , dvr for 1 polluted and 1 marine case. • Domain : 10 km × 10 km, • resolution : horizontaly : 100 m, verticaly : 10 m in/above the cloud • initialisation : corresponding profile of thermodynamical variables. Comparison of macrophysical variables Macrophysical variables for measurements (Pawlowska and Brenguier, 2003) and simulations after 2H20

  16. KK00 / measurements hbase Results 26 june (pristine) BR74 / measurements hbase Vertical profile of qr (g kg-1) Vertical profile of Nr (g kg-1) Vertical profile of dvr (g kg-1) Mean values in each 30 m layers

  17. KK00 / measurements Results 9 july (polluted) BR74 / measurements BR74 : values < 10-2 l-1 BR74 : values < 10-5 g kg-1 Pristine case : KK00 represents with good agreement precipitating variables Polluted case : KK00 underestimate precipitation. BR74 : underestimate precipitation by making too large drops but with very low concentration Vertical profile of qr (g kg-1) Vertical profile of Nr (g kg-1) Mean values in each 30 m layers Vertical profile of dvr (g kg-1)

  18. Results, super bulk parameterisation

  19. Results, super bulk parameterisation • Initial profiles : profiles (or modified profiles) of ACE-2 (26 june), EUROCS, DYCOMS-RF02 differents values of LWP : 20 g m-2 < LWP < 130 g m-2 • different values of Nact : 40 cm-3 < Nact < 260 cm-3 • Domain : 10 km * 10 km. • horizontal resolution : 100 m, • vertical resolution : 10 m near surface, in and above cloud Rbase (kg m-2 s-1) (= 1,7 mm d-1)

  20. Summary • Cloud droplet sedimentation : • Best fit with α = 3 , υ = 2 for generalized gamma law, • σg = 1,2 for lognormal law. • - Validation of the microphysical scheme : • GCSS intercomparison exercise • The KK00 scheme shows a good agreement with observations for microphysical variables • Underestimation of the precipitation flux with respect to observations. • LWP too low ? • Simulation of 2 ACE-2 case • Good agreement with observations for microphysical variables for KK00 • Parameterisation of the precipitation flux for GCM : • Corroborates experimental results : Rbase is a function of LWP and Nact

  21. BR74, no sed KK00, no sed KK00, sed BR74, sed RF02 0–800 m

  22. BR74, no sed KK00, no sed KK00, sed BR74, sed RF02 > 450 m

  23. Profils ACE-2 9july 26 june

  24. Observations Simulations Ndrizzle (l-1) hsurf (m) Results, What about microphysics ? Nc (cm-3), Ndrizzle(l-1) CT leg CB leg CT BR74 KK00 CB Øvdrizzle (µm) hsurf (m) CT leg Øgc, Øgdrizzle (µm) CB leg CT BR74 KK00 CB Variations of mean values of N and geometrical diameter for cloud and for drizzle, along 1 cloud top leg,, 1 cloud base leg. Mean values over 12 km. (Van Zanten personnal communication). Averaged profils of Ndrizzle, Øvdrizzle in each 30 m layer after 3 hours of simulation.

  25. 9 juillet

  26. 26 juin

  27. hsurf hbase hbase sigma dv hsurface

  28. cloud rain r=20 µm Paramétrisations « bulk » Modèle bulk On prédit les moments de la distribution qui représentent des propriétés d’ensemble (bulk) de la distribution. ex : M0=Ni , M3=qi Modèle explicite ou bin On prédit la distribution elle même. ~ 200 classes. Modèle bulk moins de variables

  29. Parametrisations bulk valides dans les GCM? collection accrétion autoconversion • Processus microphysiques(~10 m, ~1 s) dépendent non linéairement des variables locales (qc, qr, Nc, Nr …). • Distribution temporelle et spatiale des variables non uniforme. • le modèle doit résoudreexplicitement les variables locales pour que paramétrisations bulk soient valides. • utiliser paramétrisations bulk dans les GCM (~ 50 km, ~ 10 min) peut être remis en question.

  30. simulations • On veut plusieurs champs avec différentes valeurs de <LWP>, <N>,, <R>. • 7 simulation MESONH avec différentes valeurs de Na = 25, 50, 75, 100, 200, 400, 800 cm-3. • Fichier initial : champ de donnée à 12H de la simulation de cycle diurne d’Irina et al. sans schéma de précipitation. • 24H de simulation pour chaque simulation -> LWP varie (cycle diurne du nuage). • Domaine : 2,5 km * 2,5 km * 1220 m • Resolution horizontale : 50 mailles, verticale : 122 niveaux. • Pas de temps : 1 s. • Schémamicrophysique : schéma modifié du schéma Khairoutdinov-Kogan (2000) Fig. Profil moyen du rapport de mélange en eau nuageuse qc en fonction du temps Début des simulations avec schéma microphysique

  31. Schéma K&K modifié • K&K : schéma microphysique bulk pour les stratocumulus. Les coefficients ont été ajustés avec un modèle de microphysique explicite (bin). Intérêt : • Nact, Nc en variables pronostiques (on veut différentes valeurs de N). • schéma développé spécialement pour les stratocumulus (particularité : pluie très faible)

  32. 7 simulations de 24 H. 1 sortie toutes les heures. 7*24 = 168 champs avec des valeurs différentes de H, <LWP>, N, <R>

  33. Profil moyen du rapport de mélange en eau de pluie en fonction du temps NCCN =25 cm-3 NCCN =50 cm-3 NCCN =400 cm-3 NCCN =100 cm-3

  34. Calcul de H, LWP, N, R • mailles nuageuses : mailles ou qc > 0,025 g kg-1 cumulus sous le nuage sont rejetés. • Calcul de H • Définition de la base? • Calcul de LWP • Calcul de N • qc > 0,9 qadiab • 0,4H < h <0,6 H • Nr < 0,1 cm-3 • Calcul de R • R = < qr * (Vqr-w) >, R = < qr * Vqr > • Sur fraction nuageuse, à la base.

  35. Comparaison avec les données DYCOMS-II, ACE-2 • ACE-2 • Mesures in-situ -> vitesse des ascendances w pas prise en compte dans le calcul du flux. • Flux calculé sur la fraction nuageuse (dans le nuage) • DYCOMS-II • Mesures radar -> mesure du moment 6 de la distribution -> vitesse de chute réel. (vitesse ascendances w + vitesse terminal des gouttes Vqr) • Flux calculé au niveau de la base du nuage.

  36. R = f(H3/N)

  37. R = f(LWP/N) Observation d’un hystérésis : Déclenchement de la pluie avec un temps de retard. -> Il faut prendre en compte la tendance des variables d’état?

  38. Conclusion • On retrouve bien les résultats expérimentaux : dépendance de R en fonction des variables H ou LWP, N • Hystérésis de + en + prononcé lorsque NCCN augmente (lorsque R augmente). => rajouter une variable pronostique supplémentaire (qr) ? utiliser la tendance de LWP : dLWP/dt ? • Expliquer cette dépendance en isolant une seule cellule et en regardant comment varient qc, qr…

  39. ~100m in BL Homogeneous cloud Cloud fraction F <qc>, <Nc> (m-3) In GCM : variables are mean values smoothing effect on local peak values. ~100km Corresponding cloud in GCM grid point Underestimation of precipitation 1st solution coefficients tuned against observations • Problem • nophysically based parameterisations • Are such parameterisations, with tuned coefficients, still valid to study the AIE? 2nd solution A parameterisation of the precipitation flux averaged over an ensemble of cells is more relevant for the GCM resolution scale Presently in GCM : parameterisation schemes of precipitation directly transposed from CRM bulk parameterization. Example : The problem of modeling precipitation formation in GCM Problem : Inhomogeneity of microphysical variables. Formation of precipitation = non linear process local value have to be explicitely resolved LES domain 3D view of LWC = 0.1 g kg-1 isocontour, from the side and above.

  40. Hydrological point of view : • Precipitation flux in BLSC ~mm d-1 against~mm h-1 in deep convection clouds • BLSCare considered as non precipitatingclouds Aerosol impact on climate Energetic point of view : 1mm d-1 ~ -30 W m-2 Significant impact on the energy balance of STBL and on their life cycle Nc rv Na precipitations Why studying precipitation in BLSC (Boundary Layer Stratocumulus Clouds ) ? Parameterization of drizzle formation and precipitation in BLSC is a key step in numerical modeling of the aerosol impact on climate

More Related