1 / 54

Julio Chanam é

Wide Binaries: the non-violent end of the semi-major axis distribution. Julio Chanam é. Hubble Fellows Symposium 2010. Wide Binaries: the non-violent end of the semi-major axis distribution. Julio Chanam é. Hubble Fellows Symposium 2010. Massive Black Holes and Stellar Dynamics in

jael
Download Presentation

Julio Chanam é

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wide Binaries: the non-violent end of the semi-major axis distribution Julio Chanamé Hubble Fellows Symposium 2010

  2. Wide Binaries: the non-violent end of the semi-major axis distribution Julio Chanamé Hubble Fellows Symposium 2010 Massive Black Holes and Stellar Dynamics in Galactic Globular Clusters 2011 Symposium

  3. Wide Binaries: the non-violent end of the semi-major axis distribution • stellar masses, radii • distance scale • chemical evolution • CVs, novae, supernovae • GRBs • …. Duquennoy & Mayor (1991)

  4. Wide Binaries: the non-violent end of the semi-major axis distribution • stellar masses, radii • distance scale • chemical evolution • CVs, novae, supernovae • GRBs • …. 40 AU 103 AU 2104 AU wide binaries a = 2000 AU P ~ 105 yr m = 2 M vorb 1 km/s Duquennoy & Mayor (1991)

  5. Wide Binaries: the non-violent end of the semi-major axis distribution Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries • stellar parameters for field stars • star formation • dynamics and Galactic astronomy

  6. Parallax-based distances to low-mass field stars NLTT + Hipparcos LSPM-N + Hipparcos Gould & Chanamé (2004) Lépine & Bongiorno (2007)

  7. White dwarfs in wide binaries Monteiro et al. (2006) Initial-to-final mass relation • stellar parameteres: M, Z, redshift, radial velocity • age metallicity relation for Galactic disk • WD luminosity function and age of Galactic disk • initial-final mass relations for WDs • empirical constraints on mass loss • age-activity relations for low-mass stars • ….. Catalán et al. (2008)

  8. Galactic Astronomy Subsample of halo binaries with Hipparcos components halo secondaries primaries disk Silvestri et al. (2001) Chanamé & Ivans (in prep.)

  9. Galactic Astronomy halo disk Silvestri et al. (2001) Chanamé & Ivans (in prep.)

  10. Constraints on star formation theories White & Ghez (2001) Clarke (1995) • disk instabilities • capture • core fragmentation “coevality” of binary components favors fragmentation rather than formation in isolation!! Larson (2001)

  11. Gm binding energy  E - 2a a  , E  0 m  a  b  v M Wide binaries as dynamical probes

  12. Gm binding energy  E - 2a a  , E  0 m  1) b >> a  a  condition for destruction: 2) 3) closest encounter: b  v M Wide binaries as dynamical probes

  13. Gm binding energy  E - 2a a  , E  0 m  1) b >> a  a  condition for destruction: 2) 3) closest encounter: b ¡ !  4) v M Wide binaries as dynamical probes -

  14. 1985: constraints on the nature of (disk) dark matter MDT < 2 M Bahcall, Hut, & Tremaine (1985)

  15. Constraints on the nature of halo dark matter Kouwenhoven et al. (2010) Yoo, Chanamé, & Gould (2004) PAH: Poveda, Allen, & Hernández (2007) LB: Lépine & Bongiorno (2007) CRC: Close, Richer, & Crabtree (1990) CG: Chanamé & Gould (2004)

  16. Wide Binaries: the non-violent end of the semi-major axis distribution Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries • stellar parameters for field stars • star formation • dynamics and Galactic astronomy

  17. Wide Binaries: the non-violent end of the semi-major axis distribution # of binaries Heggie Bahcall & Soneira ………………………19 Retterer & King ………………………... 11 Latham et al. ……………………………. 6 Bahcall, Hut, & Tremaine Weinberg, Shapiro, & Wasserman Close, Richer, & Crabtree ……………… 39 Wasserman & Weinberg ……………….. 9 1995 Gould, Bahcall, & Maoz ……………….. 13 ………………….... HST Chanamé & Gould ……………………. 1423 ……….... NLTT + 2MASS + USNO-A 2004 Yoo, Chanamé, & Gould Lépine & Bongiorno ………………….. 521 ……..……… LSPM + Hipparcos Sesar, Ivezić, & Jurić …………….… > 10000 ………..…... SDSS + USNO-B Quinn et al. Jiang & Tremaine Longhitano & Binggeli ……………… > 1000 …………..…… SDSS 2010 Dhital et al. ………………………….. 1342 ……………… SDSS + USNO-B

  18. Wide Binaries: the non-violent end of the semi-major axis distribution # of binaries Heggie Bahcall & Soneira ………………………19 Retterer & King ………………………... 11 Latham et al. ……………………………. 6 Bahcall, Hut, & Tremaine Weinberg, Shapiro, & Wasserman Close, Richer, & Crabtree ……………… 39 Wasserman & Weinberg ……………….. 9 1995 Gould, Bahcall, & Maoz ……………….. 13 ………………….... HST Chanamé & Gould ……………………. 1423 ……….... NLTT + 2MASS + USNO-A 2004 Yoo, Chanamé, & Gould Lépine & Bongiorno ………………….. 521 ……..……… LSPM + Hipparcos Sesar, Ivezić, & Jurić …………….… > 10000 ………..…... SDSS + USNO-B Quinn et al. Jiang & Tremaine Longhitano & Binggeli ……………… > 1000 …………..…… SDSS 2010 Dhital et al. ………………………….. 1342 ……………… SDSS + USNO-B

  19. Sesar, Ivezić, & Jurić (2008) Close pairs on the sky SDSS random 8  V  12 12  V  16

  20. Close pairs on the sky Two-point angular correlation function w() Longhitano & Bingelli (2010) SDSS data f() ~ -

  21. 12 Common proper-motion systems 1950 a  100 AU 2000

  22. Luyten NLTT (1945-1980)  > 0.18 arcsec/yr “Reduced Proper Motion” RPM = V + 5 log() ~ MV “Reduced Proper Motion” diagram

  23. Luyten USNO 2MASS NLTT rNLTT (1945-1980)  > 0.18 arcsec/yr (1950-2000) BV (plates) “Reduced Proper Motion” (1998) JHK (CCD) RPM = V + 5 log() ~ MV “Reduced Proper Motion” diagram Salim & Gould (2003)

  24. rNLTT wide binaries final catalog: 1147 systems 999 genuine pairs • 801 disk binaries • 116 halo binaries • 82 with WD components Chanamé & Gould (2004)

  25. rNLTT wide binaries final catalog: 1147 systems 999 genuine pairs • 801 disk binaries • 116 halo binaries • 82 with WD components Chanamé & Gould (2004)

  26. Proper motions + precise distance information SDSS color-mag relations! Sesar, Ivezić, & Jurić (2008)

  27. Proper motions + precise distance information Dhital et al. (2010) 50" high mass ratio twins WDs / subdwarfs

  28. Wide Binaries: the non-violent end of the semi-major axis distribution Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries • stellar parameters for field stars • star formation • dynamics and Galactic astronomy

  29. Formation of wide binaries • clustered star formation? • dynamical capture in the field?

  30. Formation of wide binaries formation during the dissolution phase of star clusters • clustered star formation? • dynamical capture in the field? Kouwenhoven et al. (2010)

  31. Formation of wide binaries formation during the dissolution phase of star clusters • clustered star formation? • dynamical capture in the field? Kouwenhoven et al. (2010) Galactic Open Clusters open clusters are destroyed by giant molecular clouds (Binney & Tremaine, Sec.7.2) Wielen (1971) age

  32. Formation of wide binaries formation during the dissolution phase of star clusters • clustered star formation? • dynamical capture in the field? Kouwenhoven et al. (2010) The Medea/Saturn evolutionary scenario Galactic Open Clusters Wielen (1971) age Delacroix (1862) Goya (1820)

  33. Initial distribution of semi-major axes Orion Nebula Cluster Age ~1 Myr star forming regions 2 Myr 5 Myr f(a) ~ 1/a Kraus & Hillenbrand (2009) Poveda & Allen (2004)

  34. SDSS disk binaries!! Today’s distribution of semi-major axes effect of giant molecular clouds Weinberg, Shapiro, & Wasserman (1987) Wasserman & Weinberg (1991) Jiang & Tremaine (2009) Sesar, Ivezić, & Jurić (2008)

  35. Chanamé & Gould (2004) ...however, we have systems much wider than 0.1 pc !!! 0.1 pc

  36. excluded Chanamé & Gould (2004) ...however, we have systems much wider than 0.1 pc !!! bmin≥ at M ≥ 103 M allowed 0.1 pc Since binaries with large semimajor axes, a  0.1 pc, are more easily disrupted than those with small ones, any deviation (or lack thereof) from a power-law distribution at wide separations provides a test of halo dark matter models.

  37. bmin << a  “Coulomb limit” bmin >> a  “tidal limit” closest encounter is the most important one all encounters are equally important

  38. bmin << a  “Coulomb limit” bmin >> a  “tidal limit” Bahcall, Hut, & Tremaine (1985)

  39. Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs

  40. Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)

  41. Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)

  42. Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)

  43. Constraining Halo Dark Matter Chanamé & Gould (2004) Yoo, Chanamé, & Gould (2004) Halo wide binaries exclude MACHOs with M > 43 M at the standard local halo density ρH at the 95% confidence level (2σ)

  44. Constraining Halo Dark Matter Quinn et al. (2009)

  45. Constraining Halo Dark Matter Chanamé & Gould (2004) Quinn et al. (2009)

  46. Constraining Halo Dark Matter Quinn et al. (2009) Yoo, Chanamé, & Gould (2004)

  47. Constraining Halo Dark Matter • larger samples of halo binaries • understanding the genesis of halo wide binaries • more sophisticated modeling Allen, Poveda, & Hernández-Alcántara (2007) Quinn & Smith (2009) •   binaries

  48. SDSS + USNO-B DR7 + USNO-B ~ 3 106 halo stars r' < 20  > 20mas/yr  4 mas/yr

  49. SDSS + USNO-B DR5 + USNO-B ~ 4 106 halo stars r' < 20  > 20mas/yr  4 mas/yr + distance information

  50. Looking for wide binaries in SDSS MDM 2.4m Chanamé 2010 (in prep.)

More Related