540 likes | 660 Views
Wide Binaries: the non-violent end of the semi-major axis distribution. Julio Chanam é. Hubble Fellows Symposium 2010. Wide Binaries: the non-violent end of the semi-major axis distribution. Julio Chanam é. Hubble Fellows Symposium 2010. Massive Black Holes and Stellar Dynamics in
E N D
Wide Binaries: the non-violent end of the semi-major axis distribution Julio Chanamé Hubble Fellows Symposium 2010
Wide Binaries: the non-violent end of the semi-major axis distribution Julio Chanamé Hubble Fellows Symposium 2010 Massive Black Holes and Stellar Dynamics in Galactic Globular Clusters 2011 Symposium
Wide Binaries: the non-violent end of the semi-major axis distribution • stellar masses, radii • distance scale • chemical evolution • CVs, novae, supernovae • GRBs • …. Duquennoy & Mayor (1991)
Wide Binaries: the non-violent end of the semi-major axis distribution • stellar masses, radii • distance scale • chemical evolution • CVs, novae, supernovae • GRBs • …. 40 AU 103 AU 2104 AU wide binaries a = 2000 AU P ~ 105 yr m = 2 M vorb 1 km/s Duquennoy & Mayor (1991)
Wide Binaries: the non-violent end of the semi-major axis distribution Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries • stellar parameters for field stars • star formation • dynamics and Galactic astronomy
Parallax-based distances to low-mass field stars NLTT + Hipparcos LSPM-N + Hipparcos Gould & Chanamé (2004) Lépine & Bongiorno (2007)
White dwarfs in wide binaries Monteiro et al. (2006) Initial-to-final mass relation • stellar parameteres: M, Z, redshift, radial velocity • age metallicity relation for Galactic disk • WD luminosity function and age of Galactic disk • initial-final mass relations for WDs • empirical constraints on mass loss • age-activity relations for low-mass stars • ….. Catalán et al. (2008)
Galactic Astronomy Subsample of halo binaries with Hipparcos components halo secondaries primaries disk Silvestri et al. (2001) Chanamé & Ivans (in prep.)
Galactic Astronomy halo disk Silvestri et al. (2001) Chanamé & Ivans (in prep.)
Constraints on star formation theories White & Ghez (2001) Clarke (1995) • disk instabilities • capture • core fragmentation “coevality” of binary components favors fragmentation rather than formation in isolation!! Larson (2001)
Gm binding energy E - 2a a , E 0 m a b v M Wide binaries as dynamical probes
Gm binding energy E - 2a a , E 0 m 1) b >> a a condition for destruction: 2) 3) closest encounter: b v M Wide binaries as dynamical probes
Gm binding energy E - 2a a , E 0 m 1) b >> a a condition for destruction: 2) 3) closest encounter: b ¡ ! 4) v M Wide binaries as dynamical probes -
1985: constraints on the nature of (disk) dark matter MDT < 2 M Bahcall, Hut, & Tremaine (1985)
Constraints on the nature of halo dark matter Kouwenhoven et al. (2010) Yoo, Chanamé, & Gould (2004) PAH: Poveda, Allen, & Hernández (2007) LB: Lépine & Bongiorno (2007) CRC: Close, Richer, & Crabtree (1990) CG: Chanamé & Gould (2004)
Wide Binaries: the non-violent end of the semi-major axis distribution Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries • stellar parameters for field stars • star formation • dynamics and Galactic astronomy
Wide Binaries: the non-violent end of the semi-major axis distribution # of binaries Heggie Bahcall & Soneira ………………………19 Retterer & King ………………………... 11 Latham et al. ……………………………. 6 Bahcall, Hut, & Tremaine Weinberg, Shapiro, & Wasserman Close, Richer, & Crabtree ……………… 39 Wasserman & Weinberg ……………….. 9 1995 Gould, Bahcall, & Maoz ……………….. 13 ………………….... HST Chanamé & Gould ……………………. 1423 ……….... NLTT + 2MASS + USNO-A 2004 Yoo, Chanamé, & Gould Lépine & Bongiorno ………………….. 521 ……..……… LSPM + Hipparcos Sesar, Ivezić, & Jurić …………….… > 10000 ………..…... SDSS + USNO-B Quinn et al. Jiang & Tremaine Longhitano & Binggeli ……………… > 1000 …………..…… SDSS 2010 Dhital et al. ………………………….. 1342 ……………… SDSS + USNO-B
Wide Binaries: the non-violent end of the semi-major axis distribution # of binaries Heggie Bahcall & Soneira ………………………19 Retterer & King ………………………... 11 Latham et al. ……………………………. 6 Bahcall, Hut, & Tremaine Weinberg, Shapiro, & Wasserman Close, Richer, & Crabtree ……………… 39 Wasserman & Weinberg ……………….. 9 1995 Gould, Bahcall, & Maoz ……………….. 13 ………………….... HST Chanamé & Gould ……………………. 1423 ……….... NLTT + 2MASS + USNO-A 2004 Yoo, Chanamé, & Gould Lépine & Bongiorno ………………….. 521 ……..……… LSPM + Hipparcos Sesar, Ivezić, & Jurić …………….… > 10000 ………..…... SDSS + USNO-B Quinn et al. Jiang & Tremaine Longhitano & Binggeli ……………… > 1000 …………..…… SDSS 2010 Dhital et al. ………………………….. 1342 ……………… SDSS + USNO-B
Sesar, Ivezić, & Jurić (2008) Close pairs on the sky SDSS random 8 V 12 12 V 16
Close pairs on the sky Two-point angular correlation function w() Longhitano & Bingelli (2010) SDSS data f() ~ -
12 Common proper-motion systems 1950 a 100 AU 2000
Luyten NLTT (1945-1980) > 0.18 arcsec/yr “Reduced Proper Motion” RPM = V + 5 log() ~ MV “Reduced Proper Motion” diagram
Luyten USNO 2MASS NLTT rNLTT (1945-1980) > 0.18 arcsec/yr (1950-2000) BV (plates) “Reduced Proper Motion” (1998) JHK (CCD) RPM = V + 5 log() ~ MV “Reduced Proper Motion” diagram Salim & Gould (2003)
rNLTT wide binaries final catalog: 1147 systems 999 genuine pairs • 801 disk binaries • 116 halo binaries • 82 with WD components Chanamé & Gould (2004)
rNLTT wide binaries final catalog: 1147 systems 999 genuine pairs • 801 disk binaries • 116 halo binaries • 82 with WD components Chanamé & Gould (2004)
Proper motions + precise distance information SDSS color-mag relations! Sesar, Ivezić, & Jurić (2008)
Proper motions + precise distance information Dhital et al. (2010) 50" high mass ratio twins WDs / subdwarfs
Wide Binaries: the non-violent end of the semi-major axis distribution Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries • stellar parameters for field stars • star formation • dynamics and Galactic astronomy
Formation of wide binaries • clustered star formation? • dynamical capture in the field?
Formation of wide binaries formation during the dissolution phase of star clusters • clustered star formation? • dynamical capture in the field? Kouwenhoven et al. (2010)
Formation of wide binaries formation during the dissolution phase of star clusters • clustered star formation? • dynamical capture in the field? Kouwenhoven et al. (2010) Galactic Open Clusters open clusters are destroyed by giant molecular clouds (Binney & Tremaine, Sec.7.2) Wielen (1971) age
Formation of wide binaries formation during the dissolution phase of star clusters • clustered star formation? • dynamical capture in the field? Kouwenhoven et al. (2010) The Medea/Saturn evolutionary scenario Galactic Open Clusters Wielen (1971) age Delacroix (1862) Goya (1820)
Initial distribution of semi-major axes Orion Nebula Cluster Age ~1 Myr star forming regions 2 Myr 5 Myr f(a) ~ 1/a Kraus & Hillenbrand (2009) Poveda & Allen (2004)
SDSS disk binaries!! Today’s distribution of semi-major axes effect of giant molecular clouds Weinberg, Shapiro, & Wasserman (1987) Wasserman & Weinberg (1991) Jiang & Tremaine (2009) Sesar, Ivezić, & Jurić (2008)
Chanamé & Gould (2004) ...however, we have systems much wider than 0.1 pc !!! 0.1 pc
excluded Chanamé & Gould (2004) ...however, we have systems much wider than 0.1 pc !!! bmin≥ at M ≥ 103 M allowed 0.1 pc Since binaries with large semimajor axes, a 0.1 pc, are more easily disrupted than those with small ones, any deviation (or lack thereof) from a power-law distribution at wide separations provides a test of halo dark matter models.
bmin << a “Coulomb limit” bmin >> a “tidal limit” closest encounter is the most important one all encounters are equally important
bmin << a “Coulomb limit” bmin >> a “tidal limit” Bahcall, Hut, & Tremaine (1985)
Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs
Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)
Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)
Constraining Halo Dark Matter • Monte Carlo Simulations • simple impulse approximation • no disk or Galactic tides • constant density of perturbers • combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)
Constraining Halo Dark Matter Chanamé & Gould (2004) Yoo, Chanamé, & Gould (2004) Halo wide binaries exclude MACHOs with M > 43 M at the standard local halo density ρH at the 95% confidence level (2σ)
Constraining Halo Dark Matter Quinn et al. (2009)
Constraining Halo Dark Matter Chanamé & Gould (2004) Quinn et al. (2009)
Constraining Halo Dark Matter Quinn et al. (2009) Yoo, Chanamé, & Gould (2004)
Constraining Halo Dark Matter • larger samples of halo binaries • understanding the genesis of halo wide binaries • more sophisticated modeling Allen, Poveda, & Hernández-Alcántara (2007) Quinn & Smith (2009) • binaries
SDSS + USNO-B DR7 + USNO-B ~ 3 106 halo stars r' < 20 > 20mas/yr 4 mas/yr
SDSS + USNO-B DR5 + USNO-B ~ 4 106 halo stars r' < 20 > 20mas/yr 4 mas/yr + distance information
Looking for wide binaries in SDSS MDM 2.4m Chanamé 2010 (in prep.)