1 / 30

Modeling of HD180642 = V1449 Aql ( THE only  Cephei star main target of CoRoT).

Anne Thoul + Maryline Briquet, Pieter Degroote, Andrea Miglio, Josefina Montalban, Conny Aerts, Thierry Morel, Ewa Niemczura, Kévin Belkacem, ... + the Corot B star Team. Modeling of HD180642 = V1449 Aql ( THE only  Cephei star main target of CoRoT). spectroscopy. photometry.

jaimin
Download Presentation

Modeling of HD180642 = V1449 Aql ( THE only  Cephei star main target of CoRoT).

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Corot 2009 - HD180642 - A.Thoul Anne Thoul + Maryline Briquet, Pieter Degroote, Andrea Miglio, Josefina Montalban, Conny Aerts, Thierry Morel, Ewa Niemczura, Kévin Belkacem, ... + the Corot B star Team Modeling of HD180642 = V1449 Aql(THE only  Cephei star main target of CoRoT).

  2. Corot 2009 - HD180642 - A.Thoul spectroscopy photometry Zobs=0.0099+-0.0016 HD180642 Data from T. Morel, E.Niemczura et al.

  3. Corot 2009 - HD180642 - A.Thoul ground photometry ground spectroscopy HD180642 dominant radial (l=0) mode 11 independent frequencies from Corot l=3 Courtesy Pieter Degroote P62

  4. Corot 2009 - HD180642 - A.Thoul df/dt=[7.6;14.4]10-11Hz/y df/dt ~10-10 Hz/y HD180642 0.7m Swiss telescope Degroote, Aerts et al Hipparcos 1.2m Mercator telescope COROT ASAS photometry

  5. Corot 2009 - HD180642 - A.Thoul HD180642 11 independent frequencies determined from Corot light curve Only one high frequency mode identified : the high amplitude radial mode One low frequency mode identified No clear multiplet Main radial mode shows a frequency decrease Photometric and spectroscopic error boxes do not overlap

  6. Corot 2009 - HD180642 - A.Thoul HD180642 Modelling: using CLES and OSC with AGS05 and OP opacities Fit the radial mode “Free parameters”: X, Z, ov, M

  7. Corot 2009 - HD180642 - A.Thoul HD180642 Range of parameters explored: X = 0.72 – 0.74 Z = 0.010 – 0.015 ov and M: all possible values which give solutions close to the error box in HR diagram

  8. Corot 2009 - HD180642 - A.Thoul n=3 n=2 n=1 X=0.72, Z=0.015, ov=0, M=12 HD180642 A. Fit the main frequency with the fundamental radial mode on the main sequence

  9. Corot 2009 - HD180642 - A.Thoul =0.4 =0.2 =0.0 M=12 M=10 HD180642 modelling radial mode with fundamental on MS effect of M and ov (X=0.72, Z=0.010)

  10. Corot 2009 - HD180642 - A.Thoul Z=0.010 Z=0.015 HD180642 modelling radial mode with fundamental on MS effect of Z (X=0.72, ov=0)

  11. Corot 2009 - HD180642 - A.Thoul X=0.72 X=0.74 M=10 M=12 HD180642 modelling radial mode with fundamental on MS effect of X(Z=0.010, ov=0)

  12. Corot 2009 - HD180642 - A.Thoul  log g fixed by radial mode M~9 M~13 HD180642 radial = fundamental on MS

  13. Corot 2009 - HD180642 - A.Thoul n=3 n=2 n=1 X=0.72, Z=0.015, ov=0, M=12 HD180642 B. Fit the main frequency with the first overtone of the radial mode on the main sequence

  14. Corot 2009 - HD180642 - A.Thoul HD180642 radial mode = first overtone M~10 M~13 radial mode = fundamental

  15. Corot 2009 - HD180642 - A.Thoul n=2 n=3 n=1 X=0.72, Z=0.015, ov=0.4, M=10 HD180642 C. Fit the main frequency with the second overtone of the radial mode on the main sequence

  16. Corot 2009 - HD180642 - A.Thoul HD180642 n=3 n=2 n=1

  17. Corot 2009 - HD180642 - A.Thoul n=3 n=2 n=1 n=2 n=1 n=3 n=3 n=2 X=0.72, Z=0.010, ov=0.2, M=10 log HD180642 D. Fit the main frequency with a radial mode after the TAMS

  18. Corot 2009 - HD180642 - A.Thoul n=3 n=2 n=1 HD180642 TAMS MS X=0.72,Z=0.010,ov=0.2,M=10

  19. Corot 2009 - HD180642 - A.Thoul HD180642 n=3 n=2 n=1

  20. Corot 2009 - HD180642 - A.Thoul HD180642 TAMS MS df/dt on MS much too small

  21. Corot 2009 - HD180642 - A.Thoul HD180642 TAMS MS

  22. Corot 2009 - HD180642 - A.Thoul HD180642 TAMS MS

  23. Corot 2009 - HD180642 - A.Thoul HD180642

  24. Corot 2009 - HD180642 - A.Thoul HD180642 spectroscopy photometry

  25. Corot 2009 - HD180642 - A.Thoul HD180642 X=0.72, Z=0.010, ov=0.5, M=10 X=0.72, Z=0.010, ov=0, M=10 X=0.72, Z=0.015, ov=0, M=10 X=0.72, Z=0.015, ov=0, M=12

  26. Corot 2009 - HD180642 - A.Thoul HD180642 X=0.72, Z=0.015, ov=0, M=9 radial mode is n=1, MS MAD radial mode is n=1, after TAMS radial mode is n=1, after TAMS radial mode is n=2, after TAMS radial mode is n=3, after TAMS

  27. Corot 2009 - HD180642 - A.Thoul HD180642 X=0.72, Z=0.015, ov=0.4, M=12 MAD radial mode is n=1, MS radial mode is n=2, MS radial mode is n=3, MS

  28. Corot 2009 - HD180642 - A.Thoul HD180642 CONCLUSIONS We’ve got a problem! Modelling of the star using main high amplitude radial mode: l=0, n=1  out of 2 error box in HR diagram (log g too high) range of excited frequencies more or less OK l=0, n=2  in 2 error box but range of excited frequencies too low l=0, n=3  in 1 error box but range of excited frequencies much too low df/dt cannot be explained by evolution

  29. Corot 2009 - HD180642 - A.Thoul HD180642 We’ve got a problem! Is log g correct? If yes, how can we have such high amplitude oscillations with high order radial modes? What about the excitation of the modes? What is the explanation for df/dt? Evolution? Resonant coupling? Is the star on MS or after TAMS? (1%)

  30. Corot 2009 - HD180642 - A.Thoul HD180642 A “CHIMERA” STAR Hybrid  Cephei / SPB star + solar-like oscillations (Kévin Belkacem et al.)  next step: try modelling the star using all stable and unstable modes NOTE: PROBLEM ==> We will learn something!

More Related