1 / 20

Geomorphologic controls on the age of particulate organic carbon from small mountainous rivers

Geomorphologic controls on the age of particulate organic carbon from small mountainous rivers. Lonnie Leithold and Neal Blair, North Carolina State University. Funded by NSF Integrated Carbon Cycle Research.

jake
Download Presentation

Geomorphologic controls on the age of particulate organic carbon from small mountainous rivers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geomorphologic controls on the age of particulate organic carbon from small mountainous rivers Lonnie Leithold and Neal Blair, North Carolina State University Funded by NSF Integrated Carbon Cycle Research

  2. Particulate organic carbon (POC) is only a small fraction (~1%) of the material discharged by rivers, but it is an extremely important fraction Why POC?

  3. POC moves with and is largely bound to mineral grains POC bound to mineral grains is gained and lost to various degrees as the grains move through surficial environments, dependent on their residence times in those environments POC, therefore, can tell us a great deal about sedimentary processes, both present and past Why POC?

  4. POC in small mountainous watersheds • The POC discharged by small mountainous rivers, which collectively carry about half of the total annual discharge to the ocean, is distinct from that discharged by larger, passive margin rivers

  5. POC in small mountainous watersheds • Particles in these systems generally have relatively short residence times in near-surface reservoirs (e.g., the regolith, channel floor, floodplain) • One consequence is that ancient sedimentary carbon (kerogen) survives to be recycled into modern systems

  6. POC in small mountainous watersheds • We can expect that such residence times will vary from watershed to watershed, dependent on geomorphic processes

  7. Small mountainous and upland rivers on active margins • Temperate climate with abundant, episodically intense rainfall • Underlain almost exclusively by sedimentary rocks

  8. Leithold, Blair, and Perkey, 2006, Global Biogeochemical Cycles v.20

  9. Based on d13C and D14C mass balance calculations

  10. At the lower end of yield in SMRs, riverine POC loads are dominated by young plant material delivered by processes including sheetwash and episodic shallow landsliding

  11. Concentration and 14C age of OC in a soil profile Post modern D14C = 40 Fm = 1.03 ~ 1550 yrs Data from Gaudinski et al., 2000

  12. Higher yields in these systems are accommodated by bedrock erosion • Deep gully incision, for example, delivers virtually unweathered bedrock and kerogen to the river network

  13. Based on published rock to regolith conversion rates, in order for high sediment yields (>600-800 tons km-2 yr-1) to be sustained, direct bedrock erosion must be involved • By this criterion, bedrock erosion is estimated to contribute to about ¾ of small mountainous and ½ of upland rivers catalogued by Milliman and Syvitski (1992)

  14. From Source to Sink • Can POC in the offshore stratigraphic record tell us about watershed processes in the past?

More Related