1 / 86

Termodin mica

Biology is living soft matter. Statistical description of random World . The collective activity of many randomly moving objectscan be effectively predictable, even if the individual motions are not.. Interacciones Fundamentales. Interacci

jam
Download Presentation

Termodin mica

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Termodinámica

    4. Interacciones Fundamentales Interacción Gravitacional (masa-masa) Interacción Electromagnética (carga-dipolo) Interacción Nuclear Débil (electrones-núcleo) Interacción Nuclear Fuerte (protones-neutrones)

    5. Los Sistemas Biológicos son guiados fundamentalmente por Interacciones Electromagnéticas Enlaces Covalentes Enlaces No-covalentes (Interacciones Débiles): Puentes de Hidrógeno Efecto Hidrofóbico Interacciones Iónicas Interacciones Ión-Dipolo Interacciones Dipolo-Dipolo Fuerzas de Van der Waals

    6. Enlace Covalente

    7. La Energía de Activación es el resultado de la repulsión de las nubes electrónicas

    8. Las interacciones Iónicas se dan entre partículas cargadas

    9. Participación de los Puentes de Hidrógeno: Replicación, Transcripción y Traducción

    10. Las interacciones débiles dirigen el proceso de ‘docking’ molecular

    11. El efecto hidrofóbico colabora en el plegamiento de las proteínas

    12. Which is colder? Metal or Wood?

    13. Temperatura Es la medida de la energía cinética interna de un sistema molecular

    14. 11.3 Temperature Measured in Fahrenheit, Celsius, and Kelvin Rapidly moving molecules have a high temperature Slowly moving molecules have a low temperature

    16. What is “absolute zero”?

    17. Temperature Scales

    18. Calor Es la energía cinética que se propaga debido a un gradiente de temperatura, cuya dirección es de mayor temperatura a menor temperatura

    19. Entropía S = K Ln(W) La entropía es la medida del grado de desorden de un sistema molecular

    20. Entalpía H=E+PV La entalpía es la fracción de la energía que se puede utilizar para realizar trabajo en condiciones de presión y volumen constante dH<0 proceso exotérmico dH>0 proceso endotérmico

    21. Energía Libre G=H-TS La energía libre es la fracción de la energía que se puede utilizar para realizar trabajo en condiciones de presion, volumen y temperatura constante dG<0 proceso exergónico (espontáneo) dG>0 proceso endergónico

    24. 11.4 Pressure Pressure - force per unit area It has units of N/m2 or Pascals (Pa) change impact and weight to something cool like bevo... change impact and weight to something cool like bevo...

    25. Pressure What are the possible units for pressure? N/m2 Pascal 1 Pa = 1 N/m2 atm 1 atm = 1 × 105 Pa psi 1 psi = 1 lb/inch2 mm Hg 1 atm = 760 mm Hg change impact and weight to something cool like bevo... change impact and weight to something cool like bevo...

    27. 11.5 Density Density - mass per unit volume It has units of g/cm3 fill boxes fill boxes

    28. 11.6 States of Matter

    30. Questions Is it possible to boil water at room temperature? Answer: Yes. How? Is it possible to freeze water at room temperature? Answer: Maybe. How?

    31. Gas Laws Perfect (ideal) Gases Boyle’s Law Charles’ Law Gay-Lussac’s Law Mole Proportionality Law

    32. Boyle’s Law

    33. Charles’ Law

    34. Gay-Lussac’s Law

    35. Mole Proportionality Law

    36. Perfect Gas Law The physical observations described by the gas laws are summarized by the perfect gas law (a.k.a. ideal gas law) PV = nRT P = absolute pressure V = volume n = number of moles R = universal gas constant T = absolute temperature

    37. Table 11.3: Values for R

    38. Work Work = Force ´ Distance W = F Dx The unit for work is the Newton-meter which is also called a Joule.

    39. Types of Work

    40. Mechanical Work

    41. Mechanical Work

    42. Hydraulic Work

    43. Joule’s Experiment

    44. 11.11 Energy Energy is the ability to do work. It has units of Joules. It is a “Unit of Exchange”. Example 1 car = $20k 1 house = $100k 5 cars = 1 house

    45. 11.11 Energy Equivalents What is the case for nuclear power? 1 kg coal » 42,000,000 joules 1 kg uranium » 82,000,000,000,000 joules 1 kg uranium » 2,000,000 kg coal!!

    46. 11.11 Energy Energy has several forms: Kinetic Potential Electrical Heat etc.

    47. Kinetic Energy Kinetic Energy is the energy of motion. Kinetic Energy = ½ mass ´ speed2

    48. Potential Energy The energy that is stored is called potential energy. Examples: Rubber bands Springs Bows Batteries Gravitational Potential PE=mgh

    50. 11.11.3 Energy Flow Heat is the energy flow resulting from a temperature difference. Note: Heat and temperature are not the same.

    51. Heat Flow

    52. 11.12 Reversibility Reversibility is the ability to run a process back and forth infinitely without losses. Reversible Process Example: Perfect Pendulum Irreversible Process Example: Dropping a ball of clay

    53. Reversible Process Examples: Perfect Pendulum Mass on a Spring Dropping a perfectly elastic ball Perpetual motion machines More?

    54. Irreversible Processes Examples: Dropping a ball of clay Hammering a nail Applying the brakes to your car Breaking a glass More?

    55. Example: Popping a Balloon

    56. Sources of Irreversibilities Friction (force drops) Voltage drops Pressure drops Temperature drops Concentration drops

    58. Second Law of Thermodynamics naturally occurring processes are directional these processes are naturally irreversible

    59. Heat into Work

More Related