170 likes | 197 Views
6-3. Polynomials. Warm Up. Lesson Presentation. Lesson Quiz. Holt McDougal Algebra 1. Holt Algebra 1. Objectives. Classify polynomials and write polynomials in standard form. Evaluate polynomial expressions. A polynomial is a monomial or a sum or difference of monomials.
E N D
6-3 Polynomials Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 1 Holt Algebra 1
Objectives Classify polynomials and write polynomials in standard form. Evaluate polynomial expressions.
A polynomialis a monomial or a sum or difference of monomials. The degree of a polynomial is the degree of the term with the greatest degree.
A monomial is a number, a variable, or a product of numbers and variables with whole-number exponents. The degree of a monomial is the sum of the exponents of the variables. A constant has degree 0.
A. 4p4q3 Example 1: Finding the Degree of a Monomial Find the degree of each monomial. The degree is 7. Add the exponents of the variables: 4 + 3 = 7. B. 7ed The degree is 2. Add the exponents of the variables: 1+ 1 = 2. C. 3 The degree is 0. Add the exponents of the variables: 0 = 0.
B. :degree 4 :degree 3 –5: degree 0 Example 2: Finding the Degree of a Polynomial Find the degree of each polynomial. A. 11x7 + 3x3 11x7: degree 7 3x3: degree 3 Find the degree of each term. The degree of the polynomial is the greatest degree, 7. Find the degree of each term. The degree of the polynomial is the greatest degree, 4.
Check It Out! Example 2 Find the degree of each polynomial. a. 5x – 6 –6: degree 0 5x: degree 1 Find the degree of each term. The degree of the polynomial is the greatest degree, 1. b. x3y2 + x2y3 – x4 + 2 Find the degree of each term. x3y2: degree 5 x2y3: degree 5 –x4: degree 4 2: degree 0 The degree of the polynomial is the greatest degree, 5.
The terms of a polynomial may be written in any order. However, polynomials that contain only one variable are usually written in standard form. The standard form of a polynomial that contains one variable is written with the terms in order from greatest degree to least degree. When written in standard form, the coefficient of the first term is called the leading coefficient.
6x – 7x5 + 4x2 + 9 –7x5 + 4x2 + 6x + 9 2 Degree 1 5 2 5 1 0 0 –7x5 + 4x2 + 6x + 9. The leading The standard form is coefficient is –7. Example 3A: Writing Polynomials in Standard Form Write the polynomial in standard form. Then give the leading coefficient. 6x – 7x5 + 4x2 + 9 Find the degree of each term. Then arrange them in descending order:
Remember! A variable written without a coefficient has a coefficient of 1. y5 = 1y5
6 is a constant monomial. Check It Out! Example 4 Classify each polynomial according to its degree and number of terms. a. x3 + x2 – x + 2 x3 + x2 – x + 2 is acubic polynomial. Degree 3 Terms 4 b. 6 Degree 0 Terms 1 –3y8 + 18y5+ 14yis an 8th-degree trinomial. c. –3y8 + 18y5+ 14y Degree 8 Terms 3
–144 + 220 76 Example 5: Application A tourist accidentally drops her lip balm off the Golden Gate Bridge. The bridge is 220 feet from the water of the bay. The height of the lip balm is given by the polynomial –16t2 + 220, where t is time in seconds. How far above the water will the lip balm be after 3 seconds? Substitute the time for t to find the lip balm’s height. –16t2 + 220 –16(3)2 + 220 The time is 3 seconds. –16(9) + 220 Evaluate the polynomial by using the order of operations.
Example 5: Application Continued A tourist accidentally drops her lip balm off the Golden Gate Bridge. The bridge is 220 feet from the water of the bay. The height of the lip balm is given by the polynomial –16t2 + 220, where t is time in seconds. How far above the water will the lip balm be after 3 seconds? After 3 seconds the lip balm will be 76 feet from the water.
–400 + 2006 1606 Check It Out! Example 5 What if…? Another firework with a 5-second fuse is launched from the same platform at a speed of 400 feet per second. Its height is given by –16t2 +400t + 6. How high will this firework be when it explodes? Substitute the time t to find the firework’s height. –16t2 + 400t + 6 –16(5)2 + 400(5) + 6 The time is 5 seconds. –16(25) + 400(5) + 6 Evaluate the polynomial by using the order of operations. –400 + 2000 + 6
Check It Out! Example 5 Continued What if…? Another firework with a 5-second fuse is launched from the same platform at a speed of 400 feet per second. Its height is given by –16t2 +400t + 6. How high will this firework be when it explodes? When the firework explodes, it will be 1606 feet above the ground.
Lesson Quiz: Part I Find the degree of each polynomial. 1. 7a3b2 – 2a4 + 4b –15 2. 25x2 – 3x4 Write each polynomial in standard form. Then give the leading coefficient. 3. 24g3 + 10 + 7g5 – g2 4. 14 – x4 + 3x2 5 4 7g5 + 24g3 – g2 + 10; 7 –x4 + 3x2 + 14; –1
Lesson Quiz: Part II Classify each polynomial according to its degree and number of terms. quadratic trinomial 5. 18x2 – 12x + 5 6. 2x4 – 1 quartic binomial 7. The polynomial 3.675v + 0.096v2 is used to estimate the stopping distance in feet for a car whose speed is v miles per hour on flat dry pavement. What is the stopping distance for a car traveling at 70 miles per hour? 727.65 ft