1 / 7

Teknik Pengintegralan

Teknik Pengintegralan. Definisi: Integral tak tentu suatu fungsi f, ditulis: ∫ f(x) dx adalah anti turunan f yang paling umum, yaitu: ∫ f(x) dx = F(x) + c. Rumus Dasar Pengintegralan. Sifat-sifat. Pengintegralan dengan cara penggantian.

janine
Download Presentation

Teknik Pengintegralan

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teknik Pengintegralan Definisi: Integral tak tentu suatu fungsi f, ditulis: ∫ f(x) dx adalah anti turunan f yang paling umum, yaitu: ∫ f(x) dx = F(x) + c

  2. Rumus Dasar Pengintegralan

  3. Sifat-sifat

  4. Pengintegralan dengan cara penggantian • Rumus dasar pengintegralan dapat diperluas untuk bermacam-macam bentuk integran memakai teknik yang dikenal sebagai penggantian. • Misalkan u = g(x) pada rumus pengintegralan ∫f(u) du = F(u) + c maka diperoleh ∫f(g(x)) d(g(x))=F(g(x)) + c

  5. Pengintegralan Parsial • Andaikan u =f(x) dan v = g(x). Diketahui bahwa: Dx[f(x) g(x)] = f(x) g’(x) + f’(x) g(x) Dengan pengintegralan kedua ruas, diperoleh: f(x) g(x) = ∫f(x) g’(x) dx + ∫g(x) f’(x) dx. Atau ∫f(x) g’(x) dx = f(x) g(x) - ∫g(x) f’(x) dx. Secara simbolis, dapat ditulis: ∫u dv = uv - ∫ v du

More Related