1 / 37

Module ribCTH Construeren van een Tennishal Vergeet-mij-nietjes. Week 13

Module ribCTH Construeren van een Tennishal Vergeet-mij-nietjes. Week 13. Studiejaar 2006 - 2007 Studiepunten 3 ECTS Bouwkunde / Civiele techniek. Geknikte constructies (90 graden). Toets. 20 kN. Geknikte constructies (90 graden). Gevraagd: Bereken en teken de D-, de N- en de M-lijn.

Download Presentation

Module ribCTH Construeren van een Tennishal Vergeet-mij-nietjes. Week 13

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Module ribCTH Construeren van een Tennishal Vergeet-mij-nietjes. Week 13 Studiejaar 2006 - 2007 Studiepunten 3 ECTS Bouwkunde / Civiele techniek

  2. Geknikte constructies (90 graden) Toets 20 kN

  3. Geknikte constructies (90 graden) Gevraagd: • Bereken en teken de D-, de N- en de M-lijn

  4. Geknikte constructies (90 graden) D-lijn 20 kN 20

  5. Geknikte constructies (90 graden) N-lijn 20 kN 20

  6. Geknikte constructies (90 graden) M-lijn 20 kN 20 20 ∑ M t.o.v. A = 0 -20 * 1 + 5 * 3 + M(A) = 0 M(A) = 5 kNm 5

  7. Geknikte constructies (90 graden) • Horizontale liggerVerticale staander • ∑ Fv = 0 ∑ Fv = 0 • Fv + 20 = 0 Fv -5 = 0 • Fv = -20 kN Fv = 5 kN • ∑ Fh = 0 ∑ Fh = 0 • Fh – 5 = 0 -Fh + 20 = 0 • Fh = 5 kN Fh = -20 kN

  8. Geknikte constructies Indien de staafdelen onder een andere hoek dan 90 graden aan elkaar zijn verbonden dient de hoek te worden ontbonden in een dwarskrachtcomponent en een normaalkrachtcomponent De hoek waaronder de verticale staander t.o.v het maaiveld staat, is gelijk aan de tangens van die hoek. Tan α = 2/1,5 → α = 53,13º

  9. Geknikte constructies Ontbinding verticale kracht van 10 kN • Fv = cos(90º - 53,13º) * 10 → Fv = 8 kN • Fh = sin(90º - 53,13º) * 10 → Fh = 6 kN Ontbinding horizontale kracht van 5 kN • Fv = cos 53,13º * 5 → Fv = 3 kN • Fh = sin 53,13º * 5 → Fh = 4 kN

  10. Geknikte constructies 6 kN 8 kN 10 kN 4 kN 5 kN 3 kN 2 m 1.5 m 1 m

  11. Geknikte constructies

  12. Geknikte constructies • Horizontale liggerVerticale staander • ∑ Fv = 0 ∑ Fv = 0 • Fv + 10 = 0 -Fv + 6 - 4 = 0 • Fv = -10 kN Fv = -2 kN • ∑ Fh = 0 ∑ Fh = 0 • Fh – 5 = 0 -Fh + 8 + 3 = 0 • Fh = 5 kN Fh = -11 kN • ∑ M t.ov. C = 0 • -10 * 1 + Mc= 0 kNm • Mc = 10 kNm • ∑ M t.o.v A • -10 * 2,5 + 5 * 2 +Ma = 0 • Ma = 15 kN

  13. Geknikte constructie met gelijkmatige belasting

  14. Geknikte constructie met gelijkmatige belasting Wordt een schuine staaf belast door een verticaal gerichte verdeelde belasting, dan dient ook de verdeelde belasting te worden ontbonden in een verdeelde belasting loodrecht op de staafas en een verdeelde belasting evenwijdig aan de staafas. In dit voorbeeld wordt zowel het schuine deel als het horizontale deel belast met een gelijkmatig verdeelde belasting van 20 kN/m.

  15. Geknikte constructie met gelijkmatige belasting Staaf 1 • Q = 20 * 4,24 = 84,8 kN Staaf 2 • Q = 20 * 2 = 40 kN ∑ Fv = 0 • Fa + 84,8 + 40 = 0 • Fa = - 124,8 kN

  16. Geknikte constructie met gelijkmatige belasting ∑ M t.o.v B = 0 • +124,8 * 5 - 84,8 * 3,5 - 40 * 1 - FAh * 3 = 0 • FAh = 95,7 kN ∑ Fh = 0 • FBh + 95,7 = 0 • FBh = - 95,7 kN

  17. Geknikte constructie met gelijkmatige belasting 95,7 kN Fr = 40 kN Fr = 84,8 kN 95,7 kN 124,8 kN

  18. Geknikte constructie met gelijkmatige belasting Staaf 1 maakt met het maaiveld een hoek van: tan α = 3/3 → α = 45º Ontbinden van de verticale kracht Fav = 124,8 kN • Fv = Fh = sin 45 * 124,8 = 88,2 kN Ontbinden van de verticale kracht F = 40 kN • Fv = Fh = sin 45 * 40 = 28,3 kN Ontbinden van de horizontale kracht FAh = 95,7 kN • Fv = Fh = sin 45 * 95,7 = 67,7 kN Ontbinden van de horizontale kracht Fh = 95,7 kN • Fv = Fh = sin 45 * 95,7 = 67,7 kN

  19. Geknikte constructie met gelijkmatige belasting Staaf 1 Punt A • Verticale krachten + 67,7 – 88,2 = - 20,5 kN Horizontale krachten +88,2 + 67,7 = 155,9 kN

  20. Geknikte constructie met gelijkmatige belasting Punt C • Verticale krachten +28,3 - 67,7 = - 39,4 kN • Horizontale krachten - 28,3 - 67,7 = - 96 kN

  21. Geknikte constructie met gelijkmatige belasting Op de plaats van het dwarskrachtennulpunt in staaf 1 moet de momentenlijn een extreme waarde aannemen. De afstand van dit punt tot A bedraagt: 20,5 / sin 45 * 20 = 1,45 m (De gelijkmatig belasting van 20 kN/m is hierboven ontbonden in een horizontale component, deze is tevens gelijk aan het verticale moment (ook 14,1 kN) . Daar deze verticale kracht evenwijdig en loopt met staaf 1 en gericht is naar punt A neemt deze normaalkracht toe naarmate de doorsnede dichter bij A wordt gekozen, de normaalkracht in de schuine staaf is dus niet meer constant.) De waarde van het maximale veldmoment is dan: (20,5 * 1,45) / 2 = 14,9 kNm

  22. Geknikte constructie met gelijkmatige belasting 40 kN 28,3 kN Staaf AC 28,3 kN 67,7 kN 95,7 kN C 67,7 kN 67,7 kN 95,7 kN A 88,2 kN 67,7 kN 88,2 kN 124,8 kN

  23. Geknikte constructie met gelijkmatige belasting 20,5 – sin(45)*84,4 = 39,2 kN

  24. Geknikte constructie met gelijkmatige belasting

  25. Geknikte constructie met gelijkmatige belasting

  26. Driescharnierconstructies q= 15 kN/m

  27. Driescharnierconstructies • Som v/d momenten t.o.v. A = 0 • 15*12*6 + 15*12*18 – 24FBv = 0 • FBv = 180 kN • Som v/d verticale krachten = 0 • (15*12)+(15*12) – 180 – FAv = 0 • FAv = 180 kN

  28. Driescharnierconstructies • Som van de momenten t.ov. Slinks = 0 • FAh*9 – 180 * 12 + 180 * 6 = 0 • Fah = 120 kN • Som van de horizontale krachten = 0 • 120 – FSh = 0 • FSh = 120 kN

  29. Driescharnierconstructies Vervolgens verdelen we de globale belasting over het schuin deel (We tekenen deze in over de halve constructie daar de constructie en belasting symmetrisch zijn) 120 kN q= 13,42 kN 120 kN 180 kN

  30. Driescharnierconstructies • De schuine ligger maakt een hoek met de verticale ligger, deze is: • Tan α = 6 / 12 → 26,6º • Ontbinden in vectoren van de verticale kracht FAv = 180 kN Fh = sin 26,6 * 180 = 80,6 kN Fv = cos 26,6 * 180 = -160,9 kN • Ontbinden in vectoren van de verticale kracht FAh = 120 kN Fh = cos 26,6 * 120 = 107,3 kN Fv = sin 26,6 * 120 = 53,7 kN

  31. Driescharnierconstructies • Ontbinden in vectoren van de horizontale kracht Fs = -120 kN Fsh = cos 26,6 * 120 = -107,3 kN Fsv = sin 26,6 * 120 = 53,7 kN • Ontbinden in vectoren van de gelijkmatig verdeelde belasting q = 13,42 kN/m qh = cos 26,6 * 13,42 = 12 kN/m qv = sin 26,6 * 13,42 = -6 kN/m

  32. Driescharnierconstructies • Staaf CB • Punt C • Verticale krachten - 160,9 + 53,6 = - 107,3 kN • Horizontale krachten 107,3 + 80,6 = 187,9 kN

  33. Driescharnierconstructies • Punt B • Verticale krachten Fsv = 53,7 kN • Horizontale krachten Fsh = -107,3 kN • Op de plaats van het dwarskrachtennulpunt in CB moet de momentenlijn een extreme waarde aannemen. De afstand van dit punt tot A bedraagt: 53,7 / 12 = 4,48 m • De waarde van het maximale veldmoment is dan: • (53,7 * 4,48) / 2 = 120,3 kNm

  34. Driescharnierconstructies Fr = cos(26,6)*180 = 161 kN 107,3 kN 120 kN B 53,7 kN 53,7 kN 120 kN C 80,6 kN 107,3 kN 161 kN 180 kN

  35. Driescharnierconstructies • Staaf AC • ∑ Fv = 0 -180 + Fv = 0 Fv = 180 kN (gelijk aan 13,42 kNm * 13,42 m = Q = 180 kN) • ∑ Fh = 0 120 – Fsh = 0 Fsh = 120 kN • ∑ M = 0 120 * 3 = 360 kNm

  36. Driescharnierconstructies

  37. EINDE Docent: M.J.Roos

More Related