1 / 21

TOP CROSS SECTION MEASUREMENTS AT THE TEVATRON

TOP CROSS SECTION MEASUREMENTS AT THE TEVATRON. SUSANA CABRERA IFIC (CSIC-University of Valencia) on behalf of the CDF & D0 collaborations. XIV International Workshop On Deep Inelastic Scattering Tsukuba, 20-24 APRIL 2006. Top pair production : from TEVATRON to LHC.

jarah
Download Presentation

TOP CROSS SECTION MEASUREMENTS AT THE TEVATRON

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TOP CROSS SECTION MEASUREMENTSAT THE TEVATRON SUSANA CABRERA IFIC (CSIC-University of Valencia) on behalf of the CDF & D0 collaborations XIV International Workshop On Deep Inelastic Scattering Tsukuba, 20-24 APRIL 2006

  2. Top pair production : from TEVATRON to LHC At TEVATRON √s=1.96 TeV: Cacciari et al. JHEP 0404:068 (2004) Kidonakis & Vogt PRD 68 114014 (2003) stt (theo)  6.7± 0.8 pb (MTOP=175GeV/c2) σtt(NLO THEO): 12% ACCURACY At LHC √s=14 TeV: 10% qq vs 90% gg R.Bonciani et al. hep-ph/9801375 • Experimental precision in σtt never achieved before • Exhaustive test of the QCD theory • We can find new physics in the top sample. Now at the TEVATRON

  3. OUTLINE & MAIN SIGNATURES • L(e,μ)+JETS CHANNEL: • Kinematics, NN • (CDF, L=760 pb-1) • Secondary vertex b-tag • (CDF, L=695 pb-1) • ALL HADRONIC: • Observed mass spectrum • (DØ, 360 pb-1) • tau+JETS • Missing Et + JETS & Secondary vertex b-tag • (CDF,L=311 pb-1) • DILEPTON CHANNEL: • ee,µµ,eµ • (CDF, L=750 pb-1) • e,µ + track with secondary vertex tag tagging • (DØ, L=370 pb-1) • Dilepton Inclusive (CDF, L=360 pb-1) t →Wb ~ 100% (SM) Main signatures tt  llbb di-lepton 5% e+ bkgrd low tt  lqqbb lepton+jets 30% e+ bkgrd moderate tt  qqqqbb all hadronic 45% bkgrd high

  4. THE DILEPTON CHANNEL. b t e,µ W   W e,µ t b q q Final State from Leading Order Diagram • BACKGROUNDS: • Physics:WW,WZ, Z  tautau • Real MET from neutrinos • High E T jets from extra QCD radiation • MC DRIVEN • Instrumental • Fake leptons in W(→lν)+>=3 jets • DY/Z→ee/μμ with mismeasured MET. • CHALLENGE Determination relies on DATA. SIGNATURE • 2 high P T leptons, PT> 20 GeV • 2 high E T jets from b-quarks • High Missing E T (MET) from neutrinos • ANALYSES STRATEGIES: • ee,µµ,eµ (CDF, L=750 pb-1) • S/B favorable, no btagging needed • TO BE SENSITIVE TO NEW PHYSICS • Looser lepton selection: • e,µ + track (DØ, L=370 pb-1) • Looser event selection: • Dilepton Inclusive (CDF, L=360 pb-1)

  5. Dileptons: ee,μμ,eµ L=750 pb-1 CONTROL REGION NJETS=0,1 SIGNAL REGION N JETS≥2 • Veto Z´sin 76<Mee,μμ<106 • Jet Sig = MET/σ(MET) • Missing ET>25GeV • (away from any jet or lepton) • To enhance S/B: • HT > 200 GeV • ( of ET, leptons, jets & MET) • To reduce fake leptons from W+(≥2jets) • Leptons oppositely charged

  6. Dileptons: ee,μμ,eµ L=750 pb-1 • MAIN SYSTEMATICS • Jet Energy Scale • DY/Z →ee/μμ & fakes background method

  7. e,μ+track vertex btag & eµ L= 370 pb-1 • TO INCREASE ACCEPTANCE • Release lepton ID on second leg • PRICE TO PAY: MORE BACKGROUND • High MET, cut dependent on Meµ,track • Need to use b-tagging • At least 1 b-tagged jet PRE-TAGGED NJETS=1 PRE-TAGGED NJETS>=2

  8. e,μ+track vertex btag & eµ L= 370 pb-1 After b-tagging • MAIN • SYSTEMATIC • Jet Energy Scale

  9. Global high-Pt dilepton analysis L=360 pb-1 WW ttbar W+jets WZ New physics? Missing energy W+g ZZ Ztt DY(ee,mm) Jet multiplicity Higher statistical power with less purity • Fit ALL SM processes in the MET vs NJETS space • In ee,mm: NEX STEP: look for new physics

  10. THE L+JETS CHANNEL q´ b e,µ t W  W q t b q q Final State from Leading Order Diagram • BACKGROUNDS: • Physics: • W+jets (Dominant) • Instrumental: • QCD multijets • -1 jet faking 1 high Pt lepton • -Missing ET from mismeasurements • ANALYSES STRATEGIES: • Event Kinematics S/B ~(1:5) • B-tagging S/B ~(3:1) SIGNATURE • 1 isolated lepton (e,µ) Pt>20 GeV • 2 jets from b-quarks • 2 jets from light quarks • High MET from neutrinos • CHALLENGES: • W+jets: • IF EVENT KINEMATICS: • MC driven: σ(W+jets) NOT precisely known • IF B-TAGGING: • W+HF(b,bb,c) (MC/DATA) • W+LF(MISTAGS) • QCD multijets: • Determination relies on DATA.

  11. l+jets with kinematics & ANN • Backgrounds: • W+(>=n jets) (MAIN) • MC (ALPGEN+HERWIG) driven • QCD multijets (3.7%) • DATA driven • “l+jets” Event Selection: • To reduce QCD multijet: • If MET<30 GeV: 0.5<ΔΦ(MET,leading jet) <2.5 • METHOD: • 7 KINEMATIC & TOPOLOGICAL VARIABLES • HT, Aplanarity, min(Mjj), min(ΔRjj) • ηMAX, , Sum(Pz)/Sum(E T), E T(2nd-j)+ET(3rd-j) • ANN (Artificial Neuronal Network) • Maximize discrimination ttbar against W+jets • Take correlations into account

  12. l+jets with kinematics: 760 pb-1 Binned Likelihood Fit • 4% QCD • 80% W+jets • 15% ttbar • Main • systematics: • 8.3% Jet Energy scale • 10.2% W+jets Q2 scale CDF Preliminary (760 pb-1)

  13. L+jets secondary vertex tag L=695 pb -1 • EVENT SELECTION: • >=1 b-tag • HT >200 GeV CONTROL REGION SIGNAL REGION 2 b tags 156 158 53.0+-6.3 17.2+-1.9

  14. L+jets secondary vertex tag L=695 pb -1 s(tt) =  8.2 ± 0.6 (stat) ± 1.0 (syst) ±0.5 (lumi) pb SYSTEMATIC ERROR DOMINATES

  15. MET+jets secondary vertex tag L=311 pb -1 • EVENT SELECTION: • Multijet trigger: • 4 high ET jets • High SumEt. • Veto high PT e or µ • ≥ 1 btag tau+jets l+jets:µ,e not identified CHALLENGE Very small S/B ! 1st)CONTROL REGION N JETS=3 Measure probability to get +btag from QCD multijets and fake MET. 2nd) SIGNAL REGION NJETS≥ 4 Apply mistag probability to sample before btagging. • 3rd) Optimize S/B with KINEMATIC cuts • Met/ √SumEt ≥ 4 GeV ½ • minΔΦ(Met,jets) ≥ 0.4 rad S/B:1/5 BEFORE BTAGGING

  16. MET+jets secondary vertex tag L=311 pb -1 After btagging : >=1btag • MAIN SYSTEMATICS: • 8.2% Generator • 10% Background predicion S/B=1.14 N expected (ttbar)=56.5 (MTOP=178 GeV/c2)

  17. ALL HADRONIC: OBSERVED MASS SPECTRUM with secondary vertex tagging • EVENT SELECTION: • 6 JETS: 2 b-tagged jetsET>45 GeV • 2 non b-tagged jets ET>20 GeV • 2 jets ET>15 GeV 2-jet mass: Mjj with 2 non-btg jets • BACKGROUND METHOD: • SHAPE: from pretagged multijet data • random jets as b-jets • Kinematic correlations: Pt-bjet, dRbb • RATE: Mjj < 65 GeV shape normalized to DATA 3-jet mass: Mbjj (1btg jet, 2 non-btg jets) TIGHT Aplanarity>0.05 Centrality>0.7 Sphericity>0.5 ΔR bb>1 LOOSE No kinematic cuts MEDIUM Aplanarity>0.05 Centrality>0.6 Sphericity>0.2 ΔRbb>1

  18. ALL HADRONIC: OBSERVED MASS SPECTRUM & secondary vertex tagging MAIN SYSTEMATICS: 25% Bkg Model. 15% Jet Energy Scale. 18% b-tagging efficiency σ(tt) = 12.1  ± 4.9 (stat) ± 4.6 (syst) pb

  19. CDF & DØ SUMMARY WEIGHT 11% 32% 50% 2% 6% -2% BEST SINGLE σMEASURED CDF COMBINED σtt=7.3±0.9 pb 15% improvement w.r.t best single σmeasured

  20. σttbar vs √s & MTOP

  21. CONCLUSIONS • Importance of s tt measurements • Check of perturbative QCD • Starting point to measure top quark properties: mass, charge, W helicity…..window for NEW PHYSICS. • Background for Higgs and other searches. • Current CDF precision from combined result ~12% , reach the current accuracy of the NLO QCD calculations CDF PRELIMINARY (MTOP=175 GeV/c2) • Combining 6 measurements with data samples up to 760 pb-1 the systematic uncertainty dominates over the statistical. • New challenge with 1 fb-1 (combining CDF & D0 )is to reduce the systematic uncertainties (Jet Energy Scale and b-tagging)

More Related