200 likes | 339 Views
Goldshmidt conference, 13 May 2014, Sacramento. Electron exchange between microorganisms and conductive minerals. Souichiro Kato. National Institute of Advanced Industrial Science & Technology, Japan Univ . of Tokyo, Japan Hokkaido Univ ., Japan. (semi)conductive iron minerals.
E N D
Goldshmidt conference, 13 May 2014, Sacramento Electron exchange between microorganisms and conductive minerals Souichiro Kato National Institute of Advanced Industrial Science & Technology, Japan Univ. of Tokyo, Japan HokkaidoUniv., Japan
(semi)conductive iron minerals ◆Iron minerals(Iron oxides/sulfides) 1. Abundantly exist on the Earth 2. Diverse electrochemical properties * Magnetite (Fe3O4): Conductive * Hematite (α-Fe2O3), Pyrite (FeS): Semi-conductive Electric current generation across a black smoker chimney Nakamura R. et al. (2010) Angew. Chem. Int. Ed. Chimney rocks (chalcopyrite/pyrite) show conductivity
(semi)conductive iron minerals ◆Iron minerals(Iron oxides/sulfides) 1. Abundantly exist on the Earth 2. Diverse electrochemical properties * Magnetite (Fe3O4): Conductive * Hematite (α-Fe2O3), Pyrite (FeS): Semi-conductive 3. Microbes often generate (semi)conductive iron minerals BanfieldJS. (2000) Science,etc. 4. Some microbes uptake (or inject) electrons from (or to) conductive minerals Nakamura R. et al. (2009) Angew. Chem. Int. Ed. Kato S. et al. (2011) Environ. Microbiol.
Electricity consuming/generating microbes Electricity Consumers Electricity Generators Current Current ATP Organics e- ATP CO2 NO3- e- Cathode N2 Anode Electric current (free electrons in conductors) as an electron donor Electric current as an electron acceptor
Extracellular electron transfer Extracellular electron transfer Oxygen respiration Organics Organics e- e- CO2 H+ CO2 H+ NADH NADH NAD+ Conductive materials NAD+ H+ Inside Outside e- Redox proteins (c-type cytochromes) H+ H2O e- O2 Outer membrane Inner membrane
Today’s topics Electric syntrophy A novel way of microbial metabolism, in which conductive minerals work as electric wires between two microorganisms 1. Model experiment 2. Enhancement of microbial methane generation
Model experiment Geobactersulfurreducens ○ current generation & acetate oxidation Thiobacillusdenitrificans ○ current consumption & nitrate reduction Potential : +0.4V Electron donor : acetate Potential : -0.4V Electron acceptor : nitrate 20 0 15 Geobacter Geobacter 10 Current density (μA/cm2) Current density (μA/cm2) -5 Thiobacillus 5 Thiobacillus 0 -10 0 10 20 30 40 0 10 20 30 40 Kato S. PNAS. 2012 Time (hr) Time (hr)
Electrochemical analysis Linear sweep voltammetry(1mV/s) Available potential range (Thiobacillus) 40 Geobacter Acetate -0.4 20 Onset CO2 e- -0.2 0 Current (μA) Onset e- EºpH7 (V vs. SHE) -20 0 Thiobacillus NO3- -40 0.2 -0.4 -0.2 0 0.2 NH4+ Potential (V vs. SHE) Available potential range (Geobacter) 0.4 Kato S. et al.,PNAS. 2012
Electric syntrophy with magnetite Kato S. et al.,PNAS. 2012
Electric syntrophy with magnetite + Magnetite Kato S. et al.,PNAS. 2012
Electric syntrophy with magnetite Kato S. et al.,PNAS. 2012 38 33
Electric syntrophy with graphite Graphite nano-particle (Conductive) Al2O3nano-particles (insulative) NO3- NO3- Mixed-culture Acetate Acetate Geobacter Thiobacillus NH4+ NH4+ Kato S. PNAS. 2012
Syntrophic methanogenesis Hydrogen-syntrophy • H2 diffusion limited • Energy gap → so slow reaction Methanogenic archaea Organics oxidizer Electric syntrophy • Electric current base • No energy gap → faster reaction ??
Stimulation of methanogenesis Methanogenesis from ethanol by enrichment cultures No minerals +Hematite(semi-conductive) +Magnetite(conductive) +Ferrihydrite(insulative) Kato S. et al.,Environ. Microbiol. 2012
Enriched microbes Non-Fe Hematite Magnetite Ferrihydrite ◆ Methanogens : Dominate in all conditions ◆ Geobacter: Dominate when conductive minerals exist Kato S. et al.,Environ. Microbiol. 2012
Growth of Geobacter +BES(inhibitor of methanogenesis) Geobacter : Grew when conductive minerals exist Addition of BES → Inhibit growth of Geobacter Geobacterdepends on methanogenic archaea Kato S. et al.,Environ. Microbiol. 2012
Summary Microbial extracellular electron transfer A special form of microbial energy metabolism Conductive iron minerals are their “energy sources” Electricsyntrophy Electriccurrentsmediate interspecies electron (energy) transfer Iron oxides (e.g., magnetite) work as “electric wire” Electric interactions between microorganisms and minerals may contribute greatly to diverse biogeochemical reactions