210 likes | 220 Views
Point-Slope Form. 11-4. Warm Up. Problem of the Day. Lesson Presentation. Pre-Algebra. HOMEWORK answers. Page 553 #1-8. Pre-Algebra HOMEWORK. Page 560 #14-18. Our Learning Goal.
E N D
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation Pre-Algebra
HOMEWORK answers Page 553 #1-8
Pre-Algebra HOMEWORK Page 560 #14-18
Our Learning Goal Students will be able to graph linesusing linear equations, understand the slope of a line and graph inequalities.
Our Learning Goal Assignments • Learn to identify and graph linear equations. • Learn to find the slope of a line and use slope to understand and draw graphs. • Learn to use slopes and intercepts to graph linear equations. • Learn to find the equation of a line given one point and the slope. • Learn to recognize direct variation by graphing tables of data and checking for constant ratios. • Learn to graph inequalities on the coordinate plane. • Learn to recognize relationships in data and find the equation of a line of best fit.
Today’s Learning Goal Assignment Learn to find the equation of a line given one point and the slope.
Vocabulary point-slope form
The point-slope of an equation of a line with slope m passing through (x1, y1) is y – y1 = m(x – x1). Point on the line Point-slope form y – y1 = m (x – x1) (x1, y1) slope
Additional Example 1: Using Point-Slope Form to Identify Information About a Line Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. A. y – 7 = 3(x – 4) y – y1 = m(x – x1) The equation is in point-slope form. y – 7 = 3(x – 4) Read the value of m from the equation. m = 3 (x1, y1) = (4, 7) Read the point from the equation. The line defined by y – 7 = 3(x – 4) has slope 3, and passes through the point (4, 7).
1 1 1 1 1 1 y – 1 = (x + 6) 3 3 3 3 3 3 y – 1 = [x – (–6)] m = The line defined by y – 1 = (x + 6) has slope , and passes through the point (–6, 1). Additional Example 1B: Using Point-Slope Form to Identify Information About a Line B. y – 1 = (x + 6) y – y1 = m(x – x1) Rewrite using subtraction instead of addition. (x1, y1) = (–6, 1)
Try This: Example 1 Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. A. y – 5 = 2 (x – 2) y – y1 = m(x – x1) The equation is in point-slope form. y – 5 = 2(x – 2) Read the value of m from the equation. m = 2 (x1, y1) = (2, 5) Read the point from the equation. The line defined by y – 5 = 2(x – 2) has slope 2, and passes through the point (2, 5).
2 2 2 2 2 2 y – 2 = (x + 3) 3 3 3 3 3 3 y – 2 = [x – (–3)] m = The line defined by y – 2 = (x + 3) has slope , and passes through the point (–3, 2). Try This: Example 1B B. y – 2 = (x + 3) y – y1 = m(x – x1) Rewrite using subtraction instead of addition. (x1, y1) = (–3, 2)
Additional Example 2: Writing the Point-Slope Form of an Equation Write the point-slope form of the equation with the given slope that passes through the indicated point. A. the line with slope 4 passing through (5, -2) y – y1 = m(x – x1) Substitute 5 for x1, –2 for y1, and 4 for m. [y – (–2)] = 4(x – 5) y + 2 = 4(x – 5) The equation of the line with slope 4 that passes through (5, –2) in point-slope form is y + 2 = 4(x – 5).
Try This: Example 2A Write the point-slope form of the equation with the given slope that passes through the indicated point. A. the line with slope 2 passing through (2, –2) y – y1 = m(x – x1) Substitute 2 for x1, –2 for y1, and 2 for m. [y – (–2)] = 2(x – 2) y + 2 = 2(x – 2) The equation of the line with slope 2 that passes through (2, –2) in point-slope form is y + 2 = 2(x – 2).
Additional Example 2: Writing the Point-Slope Form of an Equation B. the line with slope –5 passing through (–3, 7) y – y1 = m(x – x1) Substitute –3 for x1, 7 for y1, and –5 for m. y – 7 = -5[x – (–3)] y – 7 = –5(x + 3) The equation of the line with slope –5 that passes through (–3, 7) in point-slope form is y – 7 = –5(x + 3).
Try This: Example 2B B. the line with slope -4 passing through (-2, 5) y – y1 = m(x – x1) Substitute –2 for x1, 5 for y1, and –4 for m. y – 5 = –4[x – (–2)] y – 5 = –4(x + 2) The equation of the line with slope –4 that passes through (–2, 5) in point-slope form is y – 5 = –4(x + 2).
2 20 30 3 As x increases by 30, y increases by 20, so the slope of the line is or . The line passes through the point (0, 18). Additional Example 3: Entertainment Application A roller coaster starts by ascending 20 feet for every 30 feet it moves forward. The coaster starts at a point 18 feet above the ground. Write the equation of the line that the roller coaster travels along in point-slope form, and use it to determine the height of the coaster after traveling 150 feet forward. Assume that the roller coaster travels in a straight line for the first 150 feet.
Substitute 0 for x1, 18 for y1, and for m. The equation of the line the roller coaster travels along, in point-slope form, is y – 18 = x. Substitute 150 for x to find the value of y. 2 3 y – 18 = (150) 2 2 y – 18 = (x – 0) 3 3 2 3 Additional Example 3 Continued y – y1 = m(x – x1) y – 18 = 100 y = 118 The value of y is 118, so the roller coaster will be at a height of 118 feet after traveling 150 feet forward.
1 15 45 3 As x increases by 45, y increases by 15, so the slope of the line is or . The line passes through the point (0, 15). Try This: Example 3 A roller coaster starts by ascending 15 feet for every 45 feet it moves forward. The coaster starts at a point 15 feet above the ground. Write the equation of the line that the roller coaster travels along in point-slope form, and use it to determine the height of the coaster after traveling 300 feet forward. Assume that the roller coaster travels in a straight line for the first 300 feet.
Substitute 0 for x1, 15 for y1, and for m. The equation of the line the roller coaster travels along, in point-slope form, is y – 15 = x. Substitute 300 for x to find the value of y. 1 3 y – 15 = (300) 1 1 y – 15 = (x – 0) 3 3 1 3 Try This: Example 3 Continued y – y1 = m(x – x1) y – 15 = 100 y = 115 The value of y is 115, so the roller coaster will be at a height of 115 feet after traveling 300 feet forward.
(6, 4), – 2 5 2 5 Lesson Quiz Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. 1.y + 6 = 2(x + 5) 2.y – 4 = – (x – 6) Write the point-slope form of the equation with the given slope that passes through the indicated point. 3. the line with slope 4 passing through (3, 5) 4. the line with slope –2 passing through (–2, 4) (–5, –6), 2 y – 5 = 4(x – 3) y – 4 = –2(x + 2)