1 / 27

ELECTRONS IN THE ATOM

ELECTRONS IN THE ATOM. ELECTRON CONFIGURATIONS “THE ADDRESSES OF ELEMENTS”. EQ’s. What do the chemical properties of atoms depend on? What is the quantum mechanical model? How is the quantum mechanical model organized? What is the Aufbau Principle?. ELECTRONS:.

jbrown
Download Presentation

ELECTRONS IN THE ATOM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ELECTRONS IN THE ATOM ELECTRON CONFIGURATIONS “THE ADDRESSES OF ELEMENTS”

  2. EQ’s • What do the chemical properties of atoms depend on? • What is the quantum mechanical model? • How is the quantum mechanical model organized? • What is the Aufbau Principle?

  3. ELECTRONS: The chemical properties of atoms, ions, and molecules are related to the arrangement of electrons.

  4. EVOLUTION OF THE ATOM To understand this concept, let’s take a look at the history of the atomic models. Dalton – solid indivisible mass

  5. EVOLUTION OF THE ATOM Thomson - The atom is a ball of positive charge with electrons stuck into the ball. Electron Positive charge

  6. EVOLUTION OF THE ATOM Rutherford – Most of an atom’s mass is concentrated in the small, positively charged nucleus. The electrons surround the nucleus and the rest of the atom is empty space.

  7. EVOLUTION OF THE ATOM Bohr – Electrons are arranged in concentric circular paths around the nucleus.

  8. EVOLUTION OF THE ATOM Quantum Mechanical Model – Modern atomic theory describes the electronic structure of the atom as the probability of finding electrons within certain regions of space. 90% probability of finding the electron within this space

  9. WHERE ARE THE ELECTRONS? The quantum mechanical model is a theoretical mathematical approach to the study of atomic and molecular structure – a very complex theory! So let’s not go there. Instead we will learn some of the basic concepts using a visual that we can all relate to: an apartment building. Vs.

  10. ELECTRON APARTMENTS The apartment building has different floors [principal energy level], different apartments on each floor [sublevel], and rooms [orbitals] within each apartment.

  11. PRINCIPAL ENERGY LEVELS There are seven“floors” in our building. Each of these “floors” is assigned a number. These are called the principal quantum numbers (n). Principal energy levels are assigned values in order of increasing energy: n = 1, 2, 3, 4, and so forth.

  12. PRINCIPAL ENERGY LEVELS Take a look at your periodic table. How many periods are there?

  13. Hummmm – do you think there may be a connection here? Seven levels, seven periods! So floor 2 (n = 2) would be the second period; Floor 5 (n = 5) would be the 5th period

  14. SUBLEVELS The “apartments” (sometimes called blocks or shells) within our Principal Energy Levels are identified with a letter: s, p, d or f.

  15. Principal energy level n = 1 is a bit strange, because the sublevel s is split into two areas. If you are looking for apartment 6s, it would be found here Apartment 4p, would be found

  16. ORBITALS Each sublevel (apartment) contains a very specific number of rooms (orbitals): s – blocks contain 1 orbital p – blocks contain 3 orbitals d – blocks contain 5 orbitals f – blocks contain 7 orbitals Each orbital can contain a maximum of 2 electrons.

  17. Orbitals are difficult to show until we learn a couple of principles and one rule. A good way to remember the number of orbitals is to count (horizontally) the number of elements in a block and divide that by 2. s-block; 2 elements = 1 orbital p-block; 6 elements = 3 orbitals d-block; 10 elements = 5 orbitals f-block; 14 elements = 7 orbitals

  18. ELECTRON CONFIGURATION The electron configuration actually gives us the location of any element on the periodic table. We simply have to be able to count as we fill in boxes! The way we read the configuration is to account for every electron in the atom – time to remember that as elements progress across the periodic table, the number of protons and electrons increase by one. A little practice is all it takes.

  19. Hydrogen: s1 Helium:1s2 Chlorine: 1s22s22p63s23p5 Iron: 1s22s22p63s23p63d6

  20. PAULI EXCLUSION PRINCIPLE An atomic orbital may describe at most two electrons. To occupy the same orbital, two electrons must have opposite spins. Arrows are used to indicate the electron and its direction of spin (↑ or ↓). An orbital containing paired electrons is written as ↑ ↓

  21. HUND’S RULE When electrons occupy orbitals of equal energy, one electron enters each orbital until all the orbitals contain one electron with parallel spins. p orbitals When the 4th electron is needed, it will occupy the first orbital and so on - - -

  22. AUFBAU PRINCIPLE Electrons enter orbitals of lowest energy first Increasing Energy 5d 4f 4d 3p 5f 3d 4p 5p 6p 6d 7p 2p 2s 7s 3s 4s 5s 6s 1s

  23. Hydrogen (H):

  24. Helium (He):

  25. Beryllium (Be):

  26. Aluminum (Al):

  27. Sulfur (S):

More Related