210 likes | 317 Views
A Shared Atmosphere-Ocean Dynamical Core: First Validation (Semi-Implicit Semi-Lagrangian). Pierre Pellerin(2), François Roy(1,3), Claude Girard(2), François J. Saucier(3), and Hal Ritchie(2)
E N D
A Shared Atmosphere-Ocean Dynamical Core: First Validation(Semi-Implicit Semi-Lagrangian) Pierre Pellerin(2), François Roy(1,3), Claude Girard(2), François J. Saucier(3), and Hal Ritchie(2) (1)Ocean Science Branch, Maurice Lamontagne Institute, Department of Fisheries and Oceans, Mont-Joli, Québec, Canada (2)Recherche en Prévision Numérique, Service Météorologique du Canada, Dorval, Québec, Canada (3)Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Québec, Canada
Introduction The idea of a common kernel for the atmosphere and the ocean using the semi-implicit semi-Lagrangian method implemented at CMC/RPN: Advantages and Motivations for Recherche en Prévision Numérique (RPN) and Environment Canada: • Complete a pilot study initiated by the late André Robert • The method is already implemented at the Canadian Meteorological Centre (CMC) and optimized for operational runs on super-computers • Something to offer to oceanographers in favor of technical and scientific collaborations • -Possible access to numerical and scientific developments from oceanographers • - Identify approach for GEM or other future models
generalized pressure AIR Water buoyancy generalized buoyancy Quasi-unified semi-discrete equations Ref: Girard et Al. 2005: MWR
V V V V P P P P U U U U U U Conditions Miroirs V V Objet solide L’objet Solide (advection semi-lagrangienne) • Actions: • Calcul des trajectoires 2) Interpolations Grille Arakawa Type C
V V V V Pour UU selon un mur en x: P P P P U U U U U U V V Pour VV selon un mur en x: ‘Free slip’ Objet solide L’objet Solide (advection semi-lagrangienne) • Actions: • Calcul des trajectoires • Interpolations • Solveur Équation Elliptique Grille Arakawa Type C
Le Masque VV V V V V Le masque pour P, WZ,BB … P P P P U U U U U U V V Le masque pour UU L’objet solide (les masques):
IML EAU RPN EAU VV VV L’objet solide (Comparaisons IML – RPN): UU UU
Solid Objects: Von Karman Vortex Streets Evaluation of 3 physical parameters.
Von Karman vortex streets Kundu: Fluid Mechanics Separation points ~ 80 ° Stagnation points Solid object (RPN/IML cf laboratory): Reynolds = 104 Kundu: Fluid Mec.
RPNRe=140Cylinder LaboratoryRe=140Cylinder LaboratoryRe=140Cylinder • Few Numerical noise => Allow to produce realistic vortex • Few Numerical diffusion => Allow to maintain the vortex RPNRe=140Cylinder
Demonstration experiment:Oklahoma city(300 x 200 x 50), DX=DY=1.5 meters, dt=0.12 sec, 4000 timesteps