1 / 21

A Shared Atmosphere-Ocean Dynamical Core: First Validation (Semi-Implicit Semi-Lagrangian)

A Shared Atmosphere-Ocean Dynamical Core: First Validation (Semi-Implicit Semi-Lagrangian). Pierre Pellerin(2), François Roy(1,3), Claude Girard(2), François J. Saucier(3), and Hal Ritchie(2)

Download Presentation

A Shared Atmosphere-Ocean Dynamical Core: First Validation (Semi-Implicit Semi-Lagrangian)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Shared Atmosphere-Ocean Dynamical Core: First Validation(Semi-Implicit Semi-Lagrangian) Pierre Pellerin(2), François Roy(1,3), Claude Girard(2), François J. Saucier(3), and Hal Ritchie(2) (1)Ocean Science Branch, Maurice Lamontagne Institute, Department of Fisheries and Oceans, Mont-Joli, Québec, Canada (2)Recherche en Prévision Numérique, Service Météorologique du Canada, Dorval, Québec, Canada (3)Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Québec, Canada

  2. Introduction The idea of a common kernel for the atmosphere and the ocean using the semi-implicit semi-Lagrangian method implemented at CMC/RPN: Advantages and Motivations for Recherche en Prévision Numérique (RPN) and Environment Canada: • Complete a pilot study initiated by the late André Robert • The method is already implemented at the Canadian Meteorological Centre (CMC) and optimized for operational runs on super-computers • Something to offer to oceanographers in favor of technical and scientific collaborations • -Possible access to numerical and scientific developments from oceanographers • - Identify approach for GEM or other future models

  3. generalized pressure AIR Water buoyancy generalized buoyancy Quasi-unified semi-discrete equations Ref: Girard et Al. 2005: MWR

  4. V V V V P P P P U U U U U U Conditions Miroirs V V Objet solide L’objet Solide (advection semi-lagrangienne) • Actions: • Calcul des trajectoires 2) Interpolations Grille Arakawa Type C

  5. V V V V Pour UU selon un mur en x: P P P P U U U U U U V V Pour VV selon un mur en x: ‘Free slip’ Objet solide L’objet Solide (advection semi-lagrangienne) • Actions: • Calcul des trajectoires • Interpolations • Solveur Équation Elliptique Grille Arakawa Type C

  6. Le Masque VV V V V V Le masque pour P, WZ,BB … P P P P U U U U U U V V Le masque pour UU L’objet solide (les masques):

  7. L’objet solide (Comparaisons IML – RPN):

  8. L’objet solide (Comparaisons IML – RPN):

  9. IML EAU RPN EAU VV VV L’objet solide (Comparaisons IML – RPN): UU UU

  10. Solid Objects: Von Karman Vortex Streets Evaluation of 3 physical parameters.

  11. Von Karman vortex streets Kundu: Fluid Mechanics Separation points ~ 80 ° Stagnation points Solid object (RPN/IML cf laboratory): Reynolds = 104 Kundu: Fluid Mec.

  12. Flow around a cylinder (RPN model: RE=140)

  13. RPNRe=140Cylinder LaboratoryRe=140Cylinder LaboratoryRe=140Cylinder • Few Numerical noise => Allow to produce realistic vortex • Few Numerical diffusion => Allow to maintain the vortex RPNRe=140Cylinder

  14. Demonstration experiment:Oklahoma city(300 x 200 x 50), DX=DY=1.5 meters, dt=0.12 sec, 4000 timesteps

More Related